On the convergence of Halley’s method for simultaneous computation of polynomial zeros

2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Petko D. Proinov ◽  
Stoil I. Ivanov

AbstractIn this paper we study the convergence of Halley’s method as a method for finding all zeros of a polynomial simultaneously. We present two types of local convergence theorems as well as a semilocal convergence theorem for Halley’s method for simultaneous computation of polynomial zeros.

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1640
Author(s):  
Petko D. Proinov ◽  
Milena D. Petkova

In this paper, we construct and study a new family of multi-point Ehrlich-type iterative methods for approximating all the zeros of a uni-variate polynomial simultaneously. The first member of this family is the two-point Ehrlich-type iterative method introduced and studied by Trićković and Petković in 1999. The main purpose of the paper is to provide local and semilocal convergence analysis of the multi-point Ehrlich-type methods. Our local convergence theorem is obtained by an approach that was introduced by the authors in 2020. Two numerical examples are presented to show the applicability of our semilocal convergence theorem.


2017 ◽  
Vol 7 (3) ◽  
pp. 482-494
Author(s):  
Rong-Fei Lin ◽  
Qing-Biao Wu ◽  
Min-Hong Chen ◽  
Lu Liu ◽  
Ping-Fei Dai

AbstractThe semilocal convergence of a third-order Newton-like method for solving nonlinear equations is considered. Under a weak condition (the so-called γ-condition) on the derivative of the nonlinear operator, we establish a new semilocal convergence theorem for the Newton-like method and also provide an error estimate. Some numerical examples show the applicability and efficiency of our result, in comparison to other semilocal convergence theorems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rongfei Lin ◽  
Yueqing Zhao ◽  
Qingbiao Wu ◽  
Jueliang Hu

We establish convergence theorems of Newton-Kantorovich type for a family of new modified Halley’s method in Banach space to solve nonlinear operator equations. We present the corresponding error estimate. To show the application of our theorems, two numerical examples are given.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1599
Author(s):  
Stoil I. Ivanov

In this paper, we prove two general convergence theorems with error estimates that give sufficient conditions to guarantee the local convergence of the Picard iteration in arbitrary normed fields. Thus, we provide a unified approach for investigating the local convergence of Picard-type iterative methods for simple and multiple roots of nonlinear equations. As an application, we prove two new convergence theorems with a priori and a posteriori error estimates about the Super-Halley method for multiple polynomial zeros.


2014 ◽  
Vol 7 (1) ◽  
pp. 70-84 ◽  
Author(s):  
M. Prashanth ◽  
D. K. Gupta ◽  
S. Singh

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yueqing Zhao ◽  
Rongfei Lin ◽  
Zdenek Šmarda ◽  
Yasir Khan ◽  
Jinbiao Chen ◽  
...  

Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt method and present an error estimate. Finally, three examples are provided to show the application of the theorem.


Sign in / Sign up

Export Citation Format

Share Document