Sampling unitary ensembles

2015 ◽  
Vol 04 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Sheehan Olver ◽  
Raj Rao Nadakuditi ◽  
Thomas Trogdon

We develop a computationally efficient algorithm for sampling from a broad class of unitary random matrix ensembles that includes but goes well beyond the straightforward to sample Gaussian unitary ensemble (GUE). The algorithm exploits the fact that the eigenvalues of unitary ensembles (UEs) can be represented as a determinantal point process whose kernel is given in terms of orthogonal polynomials. Consequently, our algorithm can be used to sample from UEs for which the associated orthogonal polynomials can be numerically computed efficiently. By facilitating high accuracy sampling of non-classical UEs, the algorithm can aid in the experimentation-based formulation or refutation of universality conjectures involving eigenvalue statistics that might presently be unamenable to theoretical analysis. Examples of such experiments are included.

2019 ◽  
Vol 10 (01) ◽  
pp. 2150011
Author(s):  
Roger Van Peski

Koloğlu, Kopp and Miller compute the limiting spectral distribution of a certain class of real random matrix ensembles, known as [Formula: see text]-block circulant ensembles, and discover that it is exactly equal to the eigenvalue distribution of an [Formula: see text] Gaussian unitary ensemble. We give a simpler proof that under very general conditions which subsume the cases studied by Koloğlu–Kopp–Miller, real-symmetric ensembles with periodic diagonals always have limiting spectral distribution equal to the eigenvalue distribution of a finite Hermitian ensemble with Gaussian entries which is a ‘complex version’ of a [Formula: see text] submatrix of the ensemble. We also prove an essentially algebraic relation between certain periodic finite Hermitian ensembles with Gaussian entries, and the previous result may be seen as an asymptotic version of this for real-symmetric ensembles. The proofs show that this general correspondence between periodic random matrix ensembles and finite complex Hermitian ensembles is elementary and combinatorial in nature.


Author(s):  
Marcello Pericoli ◽  
Marco Taboga

Abstract We propose a general method for the Bayesian estimation of a very broad class of non-linear no-arbitrage term-structure models. The main innovation we introduce is a computationally efficient method, based on deep learning techniques, for approximating no-arbitrage model-implied bond yields to any desired degree of accuracy. Once the pricing function is approximated, the posterior distribution of model parameters and unobservable state variables can be estimated by standard Markov Chain Monte Carlo methods. As an illustrative example, we apply the proposed techniques to the estimation of a shadow-rate model with a time-varying lower bound and unspanned macroeconomic factors.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

AbstractWe express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulæ for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.


Sign in / Sign up

Export Citation Format

Share Document