scholarly journals Multilingual Word Sense Induction to Improve Web Search Result Clustering

Author(s):  
Lorenzo Albano ◽  
Domenico Beneventano ◽  
Sonia Bergamaschi
2013 ◽  
Vol 39 (3) ◽  
pp. 709-754 ◽  
Author(s):  
Antonio Di Marco ◽  
Roberto Navigli

Web search result clustering aims to facilitate information search on the Web. Rather than the results of a query being presented as a flat list, they are grouped on the basis of their similarity and subsequently shown to the user as a list of clusters. Each cluster is intended to represent a different meaning of the input query, thus taking into account the lexical ambiguity (i.e., polysemy) issue. Existing Web clustering methods typically rely on some shallow notion of textual similarity between search result snippets, however. As a result, text snippets with no word in common tend to be clustered separately even if they share the same meaning, whereas snippets with words in common may be grouped together even if they refer to different meanings of the input query. In this article we present a novel approach to Web search result clustering based on the automatic discovery of word senses from raw text, a task referred to as Word Sense Induction. Key to our approach is to first acquire the various senses (i.e., meanings) of an ambiguous query and then cluster the search results based on their semantic similarity to the word senses induced. Our experiments, conducted on data sets of ambiguous queries, show that our approach outperforms both Web clustering and search engines.


Author(s):  
Reinald Kim Amplayo ◽  
Seung-won Hwang ◽  
Min Song

Word sense induction (WSI), or the task of automatically discovering multiple senses or meanings of a word, has three main challenges: domain adaptability, novel sense detection, and sense granularity flexibility. While current latent variable models are known to solve the first two challenges, they are not flexible to different word sense granularities, which differ very much among words, from aardvark with one sense, to play with over 50 senses. Current models either require hyperparameter tuning or nonparametric induction of the number of senses, which we find both to be ineffective. Thus, we aim to eliminate these requirements and solve the sense granularity problem by proposing AutoSense, a latent variable model based on two observations: (1) senses are represented as a distribution over topics, and (2) senses generate pairings between the target word and its neighboring word. These observations alleviate the problem by (a) throwing garbage senses and (b) additionally inducing fine-grained word senses. Results show great improvements over the stateof-the-art models on popular WSI datasets. We also show that AutoSense is able to learn the appropriate sense granularity of a word. Finally, we apply AutoSense to the unsupervised author name disambiguation task where the sense granularity problem is more evident and show that AutoSense is evidently better than competing models. We share our data and code here: https://github.com/rktamplayo/AutoSense.


Sign in / Sign up

Export Citation Format

Share Document