scholarly journals Fast Parallel Molecular Algorithms for DNA-Based Computation: Solving the Elliptic Curve Discrete Logarithm Problem overGF(2n)

2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Kenli Li ◽  
Shuting Zou ◽  
Jin Xv

Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially overGF(2n),n∈Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse overGF(2n)are described. The biological operation time of all of these algorithms is polynomial with respect ton. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations.

2019 ◽  
Vol 13 (3-4) ◽  
pp. 229-237
Author(s):  
Stavros Kousidis ◽  
Andreas Wiemers

Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.


Author(s):  
Kannan Balasubramanian ◽  
Rajakani M.

The integer factorization problem used in the RSA cryptosystem, the discrete logarithm problem used in Diffie-Hellman Key Exchange protocol and the Elliptic Curve Discrete Logarithm problem used in Elliptic Curve Cryptography are traditionally considered the difficult problems and used extensively in the design of cryptographic algorithms. We provide a number of other computationally difficult problems in the areas of Cryptography and Cryptanalysis. A class of problems called the Search problems, Group membership problems, and the Discrete Optimization problems are examples of such problems. A number of computationally difficult problems in Cryptanalysis have also been identified including the Cryptanalysis of Block ciphers, Pseudo-Random Number Generators and Hash functions.


Sign in / Sign up

Export Citation Format

Share Document