scholarly journals Explicit Solution of the Average-Cost Optimality Equation for a Pest-Control Problem

2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Epaminondas G. Kyriakidis

We introduce a Markov decision process in continuous time for the optimal control of a simple symmetrical immigration-emigration process by the introduction of total catastrophes. It is proved that a particular control-limit policy is average cost optimal within the class of all stationary policies by verifying that the relative values of this policy are the solution of the corresponding optimality equation.

1993 ◽  
Vol 7 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Linn I. Sennott

We consider a Markov decision chain with countable state space, finite action sets, and nonnegative costs. Conditions for the average cost optimality inequality to be an equality are derived. This extends work of Cavazos-Cadena [8]. It is shown that an optimal stationary policy must satisfy the optimality equation at all positive recurrent states. Structural results on the chain induced by an optimal stationary policy are derived. The results are employed in two examples to prove that any optimal stationary policy must be of critical number form.


2015 ◽  
Vol 47 (1) ◽  
pp. 106-127 ◽  
Author(s):  
François Dufour ◽  
Alexei B. Piunovskiy

In this paper our objective is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite time horizon discounted cost. The continuous-time controlled process is shown to be nonexplosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on the one hand the existence of an optimal control strategy, and on the other hand the existence of a ε-optimal control strategy. The decomposition of the state space into two disjoint subsets is exhibited where, roughly speaking, one should apply a gradual action or an impulsive action correspondingly to obtain an optimal or ε-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time t = 0 and only immediately after natural jumps is a sufficient set for the control problem under consideration.


Sign in / Sign up

Export Citation Format

Share Document