scholarly journals An Improved Moving Least Squares Method for Curve and Surface Fitting

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Lei Zhang ◽  
Tianqi Gu ◽  
Ji Zhao ◽  
Shijun Ji ◽  
Ming Hu ◽  
...  

The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameterλbased on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameterλ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.

2012 ◽  
Vol 78 (786) ◽  
pp. 142-151
Author(s):  
Kohei SAKIHARA ◽  
Hitoshi MATSUBARA ◽  
Takaaki EDO ◽  
Hisao HARA ◽  
Genki YAGAWA

2000 ◽  
Vol 2000.4 (0) ◽  
pp. 181-186
Author(s):  
Akihiro KAMINAGA ◽  
Katsuyuki SUZUKI ◽  
Daiji FUJII ◽  
Hideomi OHTSUBO

2011 ◽  
Vol 291-294 ◽  
pp. 2245-2249
Author(s):  
Shi Ju Yan ◽  
Bin Ge

For scattered data approximation with multilevel B-spline(MBS) method, accuracy could be enhanced by densifying control lattice. Nevertheless, when control lattice density reaches to some extent, approximation accuracy could not be enhanced further. A strategy based on integration of moving least squares(MLS) and multilevel B-spline(MBS) is presented. Experimental results demonstrate that the presented strategy has higher approximation accuracy.


Sign in / Sign up

Export Citation Format

Share Document