An Improved Moving Least Squares Method for Curve and Surface Fitting
The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameterλbased on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameterλ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.