scholarly journals Security Analysis on “Anonymous Authentication Scheme for Smart Home Environment with Provable Security”

2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Meijia Xu ◽  
Qiying Dong ◽  
Mai Zhou ◽  
Chenyu Wang ◽  
Yangyang Liu

As an important application of the Internet of Things, smart home has greatly facilitated our life. Since the communication channels of smart home are insecure and the transmitted data are usually sensitive, a secure and anonymous user authentication scheme is required. Numerous attempts have been taken to design such authentication schemes. Recently, Shuai et al. (Computer & Security 86(2019):132146) designed an anonymous authentication scheme for smart home using elliptic curve cryptography. They claimed that the proposed scheme is secure against various attacks and provides ideal attributes. However, we show that their scheme cannot resist inside attack and offline dictionary attack and also fails to achieve forward secrecy. Furthermore, we give some suggestions to enhance the security of the scheme. These suggestions also apply to other user authentication schemes with similar flaws.

2021 ◽  
Author(s):  
Maninder Singh Raniyal

One of the IoT's greatest opportunity and application still lies ahead in the form of smart home. In this ubiquitous/automated environment, due to the most likely heterogeneity of objects, communication, topology, security protocols, and the computationally limited na- ture of IoT objects, conventional authentication schemes may not comply with IoT security requirements since they are considered impractical, weak, or outdated. This thesis proposes: (1) The design of a two-factor device-to-device (D2D) Mutual Authentication Scheme for Smart Homes using OTP over Infrared Channel (referred to as D2DA-OTP-IC scheme); (2) The design of two proxy-password protected OTP-based schemes for smart homes, namely, the Password Protected Inter-device OTP-based Authentication scheme over Infrared Chan- nel and the Password Protected Inter-device OTP-based Authentication scheme using public key infrastructure; and (3) The design of a RSA-based two-factor user Authentication scheme for Smart Home using Smart Card.


2020 ◽  
Vol 9 ◽  
pp. 100158 ◽  
Author(s):  
Moneer Fakroon ◽  
Mohammed Alshahrani ◽  
Fayez Gebali ◽  
Issa Traore

2021 ◽  
Author(s):  
Maninder Singh Raniyal

One of the IoT's greatest opportunity and application still lies ahead in the form of smart home. In this ubiquitous/automated environment, due to the most likely heterogeneity of objects, communication, topology, security protocols, and the computationally limited na- ture of IoT objects, conventional authentication schemes may not comply with IoT security requirements since they are considered impractical, weak, or outdated. This thesis proposes: (1) The design of a two-factor device-to-device (D2D) Mutual Authentication Scheme for Smart Homes using OTP over Infrared Channel (referred to as D2DA-OTP-IC scheme); (2) The design of two proxy-password protected OTP-based schemes for smart homes, namely, the Password Protected Inter-device OTP-based Authentication scheme over Infrared Chan- nel and the Password Protected Inter-device OTP-based Authentication scheme using public key infrastructure; and (3) The design of a RSA-based two-factor user Authentication scheme for Smart Home using Smart Card.


2021 ◽  
pp. 1-12
Author(s):  
Shihong Zou ◽  
Qiang Cao ◽  
Chenyu Wang ◽  
Zifu Huang ◽  
Guoai Xu

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Khurram Khan ◽  
Saru Kumari

The authors review the biometrics-based user authentication scheme proposed by An in 2012. The authors show that there exist loopholes in the scheme which are detrimental for its security. Therefore the authors propose an improved scheme eradicating the flaws of An’s scheme. Then a detailed security analysis of the proposed scheme is presented followed by its efficiency comparison. The proposed scheme not only withstands security problems found in An’s scheme but also provides some extra features with mere addition of only two hash operations. The proposed scheme allows user to freely change his password and also provides user anonymity with untraceability.


Sign in / Sign up

Export Citation Format

Share Document