authentication scheme
Recently Published Documents


TOTAL DOCUMENTS

3512
(FIVE YEARS 887)

H-INDEX

77
(FIVE YEARS 15)

2022 ◽  
Vol 198 ◽  
pp. 103281
Author(s):  
Ruhui Ma ◽  
Jin Cao ◽  
Dengguo Feng ◽  
Hui Li ◽  
Xiaowei Li ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 647
Author(s):  
Bin Ma ◽  
Shichun Yang ◽  
Zheng Zuo ◽  
Bosong Zou ◽  
Yaoguang Cao ◽  
...  

The rapid development of intelligent networked vehicles (ICVs) has brought many positive effects. Unfortunately, connecting to the outside exposes ICVs to security threats. Using secure protocols is an important approach to protect ICVs from hacker attacks and has become a hot research area for vehicle security. However, most of the previous studies were carried out on V2X networks, while those on in-vehicle networks (IVNs) did not involve Ethernet. To this end, oriented to the new IVNs based on Ethernet, we designed an efficient secure scheme, including an authentication scheme using the Scalable Service-Oriented Middleware over IP (SOME/IP) protocol and a secure communication scheme modifying the payload field of the original SOME/IP data frame. The security analysis shows that the designed authentication scheme can provide mutual identity authentication for communicating parties and ensure the confidentiality of the issued temporary session key; the designed authentication and secure communication scheme can resist the common malicious attacks conjointly. The performance experiments based on embedded devices show that the additional overhead introduced by the secure scheme is very limited. The secure scheme proposed in this article can promote the popularization of the SOME/IP protocol in IVNs and contribute to the secure communication of IVNs.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 534
Author(s):  
Nasr Abosata ◽  
Saba Al-Rubaye ◽  
Gokhan Inalhan

The Internet of Things (IoT) connects billions of sensors to share and collect data at any time and place. The Advanced Metering Infrastructure (AMI) is one of the most important IoT applications. IoT supports AMI to collect data from smart sensors, analyse and measure abnormalities in the energy consumption pattern of sensors. However, two-way communication in distributed sensors is sensitive and tends towards security and privacy issues. Before deploying distributed sensors, data confidentiality and privacy and message authentication for sensor devices and control messages are the major security requirements. Several authentications and encryption protocols have been developed to provide confidentiality and integrity. However, many sensors in distributed systems, resource constraint smart sensors, and adaptability of IoT communication protocols in sensors necessitate designing an efficient and lightweight security authentication scheme. This paper proposes a Payload Encryption-based Optimisation Scheme for lightweight authentication (PEOS) on distributed sensors. The PEOS integrates and optimises important features of Datagram Transport Layer Security (DTLS) in Constrained Application Protocol (CoAP) architecture instead of implementing the DTLS in a separate channel. The proposed work designs a payload encryption scheme and an Optimised Advanced Encryption Standard (OP-AES). The PEOS modifies the DTLS handshaking and retransmission processes in PEOS using payload encryption and NACK messages, respectively. It also removes the duplicate features of the protocol version and sequence number without impacting the performance of CoAP. Moreover, the PEOS attempts to improve the CoAP over distributed sensors in the aspect of optimised AES operations, such as parallel execution of S-boxes in SubBytes and delayed Mixcolumns. The efficiency of PEOS authentication is evaluated on Conitki OS using the Cooja simulator for lightweight security and authentication. The proposed scheme attains better throughput while minimising the message size overhead by 9% and 23% than the existing payload-based mutual authentication PbMA and basic DTLS/CoAP scheme in random network topologies with less than 50 nodes.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Shadi Nashwan

Smart irrigation is considered one of the most significant agriculture management systems worldwide, considering the current context of water scarcity. There is a clear consensus that such smart systems will play an essential role in achieving the economic growth of other vital sectors. In general, the consequences of global warming and the unavailability of clean water sources for the agricultural sector are clear indications that the demand for these systems will increase in the near future, especially considering the recent expansions in the use of the Internet of Things (IoT) and Wireless Sensor Network (WSN) technologies, which have been employed in the development of such systems. An obvious result is that security challenges will be one of the main obstacles to attaining the widespread adoption of such systems. Therefore, this paper proposes a secure authentication scheme using Diffie–Hellman key agreement for smart IoT irrigation systems using WSNs. This scheme is based on Diffie–Hellman and one-way hash cryptographic functions in order to support the basic security services with a high data rate and ability to resist well-known attacks. The Burrows–Abadi–Needham (BAN) logic model is used to verify the proposed scheme formally. Based on various possible attack scenarios, a resistance analysis of the proposed scheme is discussed. Further analyses are performed in terms of the storage size, intercommunication, and running time costs. Therefore, the proposed scheme not only can be considered a secure authentication scheme but is also practical for smart IoT irrigation systems due to its reasonable efficiency factors.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Yujian Zhang ◽  
Yuhao Luo ◽  
Xing Chen ◽  
Fei Tong ◽  
Yuwei Xu ◽  
...  

Internet of Things (IoT) has been ubiquitous in both industrial and living areas, but also known for its weak security. Being as the first defense line against various cyberattacks, authentication is even more critical to IoT applications. Moreover, there has been a growing demand for cross-domain collaboration, leading to an increasing need for cross-domain authentication. Recently, certificate-based authentication schemes have been extensively studied. However, many of these schemes are not efficient in computation, storage, and communication, which are highly required in IoT. In this paper, we propose a lightweight authentication scheme based on consortium blockchain and design a cryptocurrency-like digital token to build trust. Furthermore, trust lifecycle management is performed by manipulating the amount of tokens. The comprehensive analysis and evaluation demonstrate that the proposed scheme is resistant to various common attacks and more efficient than competitor schemes in terms of storage, communication, and authentication cost.


2022 ◽  
Vol 71 (2) ◽  
pp. 2497-2513
Author(s):  
Mohammad Alamgeer ◽  
Fahd N. Al-Wesabi ◽  
Huda G. Iskandar ◽  
Imran Khan ◽  
Nadhem Nemri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document