scholarly journals Existence of Solutions to Quasilinear Schrödinger Equations Involving Critical Sobolev Exponent

2018 ◽  
Vol 22 (2) ◽  
pp. 401-420 ◽  
Author(s):  
Youjun Wang ◽  
Zhouxin Li
2018 ◽  
Vol 20 (03) ◽  
pp. 1750011
Author(s):  
Manassés de Souza ◽  
Yane Lísley Araújo

In this paper, we study a class of fractional Schrödinger equations in [Formula: see text] of the form [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text] is the critical Sobolev exponent, [Formula: see text] is a positive potential bounded away from zero, and the nonlinearity [Formula: see text] behaves like [Formula: see text] at infinity for some [Formula: see text], and does not satisfy the usual Ambrosetti–Rabinowitz condition. We also assume that the potential [Formula: see text] and the nonlinearity [Formula: see text] are asymptotically periodic at infinity. We prove the existence of at least one solution [Formula: see text] by combining a version of the mountain-pass theorem and a result due to Lions for critical growth.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


Sign in / Sign up

Export Citation Format

Share Document