mountain pass theorem
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 58)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Qilin Xie ◽  
Huafeng Xiao

AbstractIn the present paper, we consider the following discrete Schrödinger equations $$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$ − ( a + b ∑ k ∈ Z | Δ u k − 1 | 2 ) Δ 2 u k − 1 + V k u k = f k ( u k ) k ∈ Z , where a, b are two positive constants and $V=\{V_{k}\}$ V = { V k } is a positive potential. $\Delta u_{k-1}=u_{k}-u_{k-1}$ Δ u k − 1 = u k − u k − 1 and $\Delta ^{2}=\Delta (\Delta )$ Δ 2 = Δ ( Δ ) is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities $\{f_{k}\}$ { f k } satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.


Author(s):  
Xilin Dou ◽  
xiaoming he

This paper deals with a class of fractional Schr\”{o}dinger-Poisson system \[\begin{cases}\displaystyle (-\Delta )^{s}u+V(x)u-K(x)\phi |u|^{2^*_s-3}u=a (x)f(u), &x \in \R^{3}\\ (-\Delta )^{s}\phi=K(x)|u|^{2^*_s-1}, &x \in \R^{3}\end{cases} \]with a critical nonlocal term and multiple competing potentials, which may decay and vanish at infinity, where $s \in (\frac{3}{4},1)$, $ 2^*_s = \frac{6}{3-2s}$ is the fractional critical exponent. The problem is set on the whole space and compactness issues have to be tackled. By employing the mountain pass theorem, concentration-compactness principle and approximation method, the existence of a positive ground state solution is obtained under appropriate assumptions imposed on $V, K, a$ and $f$.


2021 ◽  
Vol 54 ◽  
Author(s):  
Alex M. Montes

In this paper, via a variational approach, we show the existence of periodic traveling waves for a Kadomtsev-Petviashvili Boussinesq type system that describes the propagation of long waves in wide channels. We show that those periodic solutions are characterized as critical points of some functional, for which the existence of critical points follows as a consequence of the Mountain Pass Theorem and Arzela-Ascoli Theorem.


2021 ◽  
Vol 29 (3) ◽  
pp. 33-66
Author(s):  
Sami Baraket ◽  
Rached Jaidane

Abstract We consider the existence of solutions of the following weighted problem: { L : = - d i v ( ρ ( x ) | ∇ u | N - 2 ∇ u ) + ξ ( x ) | u | N - 2 u = f ( x , u ) i n B u > 0 i n B u = 0 o n ∂ B , \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝ N , N #62; 2, ρ ( x ) = ( log e | x | ) N - 1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.


2021 ◽  
Vol 11 (1) ◽  
pp. 482-502
Author(s):  
Zeyi Liu ◽  
Lulu Tao ◽  
Deli Zhang ◽  
Sihua Liang ◽  
Yueqiang Song

Abstract In this paper, we are concerned with the following a new critical nonlocal Schrödinger-Poisson system on the Heisenberg group: − a − b ∫ Ω | ∇ H u | 2 d ξ Δ H u + μ ϕ u = λ | u | q − 2 u + | u | 2 u , in Ω , − Δ H ϕ = u 2 , in Ω , u = ϕ = 0 , on ∂ Ω , $$\begin{equation*}\begin{cases} -\left(a-b\int_{\Omega}|\nabla_{H}u|^{2}d\xi\right)\Delta_{H}u+\mu\phi u=\lambda|u|^{q-2}u+|u|^{2}u,\quad &\mbox{in} \, \Omega,\\ -\Delta_{H}\phi=u^2,\quad &\mbox{in}\, \Omega,\\ u=\phi=0,\quad &\mbox{on}\, \partial\Omega, \end{cases} \end{equation*}$$ where Δ H is the Kohn-Laplacian on the first Heisenberg group H 1 $ \mathbb{H}^1 $ , and Ω ⊂ H 1 $ \Omega\subset \mathbb{H}^1 $ is a smooth bounded domain, a, b > 0, 1 < q < 2 or 2 < q < 4, λ > 0 and μ ∈ R $ \mu\in \mathbb{R} $ are some real parameters. Existence and multiplicity of solutions are obtained by an application of the mountain pass theorem, the Ekeland variational principle, the Krasnoselskii genus theorem and the Clark critical point theorem, respectively. However, there are several difficulties arising in the framework of Heisenberg groups, also due to the presence of the non-local coefficient (a − b∫Ω∣∇ H u∣2 dx) as well as critical nonlinearities. Moreover, our results are new even on the Euclidean case.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dan Liu ◽  
Xuejun Zhang ◽  
Mingliang Song

We deal with the following Sturm–Liouville boundary value problem: − P t x ′ t ′ + B t x t = λ ∇ x V t , x ,     a.e.   t ∈ 0,1 x 0 cos    α − P 0 x ′ 0 sin    α = 0 x 1 cos    β − P 1 x ′ 1 sin    β = 0 Under the subquadratic condition at zero, we obtain the existence of two nontrivial solutions and infinitely many solutions by means of the linking theorem of Schechter and the symmetric mountain pass theorem of Kajikiya. Applying the results to Sturm–Liouville equations satisfying the mixed boundary value conditions or the Neumann boundary value conditions, we obtain some new theorems and give some examples to illustrate the validity of our results.


Author(s):  
Juan C. Ortiz Chata ◽  
Marcos T. O. Pimenta ◽  
Sergio Segura de León

AbstractIn this work we prove the existence of nontrivial bounded variation solutions to quasilinear elliptic problems involving a weighted 1-Laplacian operator. A key feature of these problems is that weights are unbounded. One of our main tools is the well-known Caffarelli-Kohn-Nirenberg’s inequality, which is established in the framework of weighted spaces of functions of bounded variation (and that provides us the necessary embeddings between weighted spaces). Additional tools are suitable variants of the Mountain Pass Theorem as well as an extension of the pairing theory by Anzellotti to this new setting.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1393
Author(s):  
Weichun Bu ◽  
Tianqing An ◽  
José Vanteler da C. Sousa ◽  
Yongzhen Yun

In this article, we first obtain an embedding result for the Sobolev spaces with variable-order, and then we consider the following Schrödinger–Kirchhoff type equations a+b∫Ω×Ω|ξ(x)−ξ(y)|p|x−y|N+ps(x,y)dxdyp−1(−Δ)ps(·)ξ+λV(x)|ξ|p−2ξ=f(x,ξ),x∈Ω,ξ=0,x∈∂Ω, where Ω is a bounded Lipschitz domain in RN, 1<p<+∞, a,b>0 are constants, s(·):RN×RN→(0,1) is a continuous and symmetric function with N>s(x,y)p for all (x,y)∈Ω×Ω, λ>0 is a parameter, (−Δ)ps(·) is a fractional p-Laplace operator with variable-order, V(x):Ω→R+ is a potential function, and f(x,ξ):Ω×RN→R is a continuous nonlinearity function. Assuming that V and f satisfy some reasonable hypotheses, we obtain the existence of infinitely many solutions for the above problem by using the fountain theorem and symmetric mountain pass theorem without the Ambrosetti–Rabinowitz ((AR) for short) condition.


Sign in / Sign up

Export Citation Format

Share Document