scholarly journals Inverse KKT: Learning cost functions of manipulation tasks from demonstrations

2017 ◽  
Vol 36 (13-14) ◽  
pp. 1474-1488 ◽  
Author(s):  
Peter Englert ◽  
Ngo Anh Vien ◽  
Marc Toussaint

Inverse optimal control (IOC) assumes that demonstrations are the solution to an optimal control problem with unknown underlying costs, and extracts parameters of these underlying costs. We propose the framework of inverse Karush–Kuhn–Tucker (KKT), which assumes that the demonstrations fulfill the KKT conditions of an unknown underlying constrained optimization problem, and extracts parameters of this underlying problem. Using this we can exploit the latter to extract the relevant task spaces and parameters of a cost function for skills that involve contacts. For a typical linear parameterization of cost functions this reduces to a quadratic program, ensuring guaranteed and very efficient convergence, but we can deal also with arbitrary non-linear parameterizations of cost functions. We also present a non-parametric variant of inverse KKT that represents the cost function as a functional in reproducing kernel Hilbert spaces. The aim of our approach is to push learning from demonstration to more complex manipulation scenarios that include the interaction with objects and therefore the realization of contacts/constraints within the motion. We demonstrate the approach on manipulation tasks such as sliding a box, closing a drawer and opening a door.

2013 ◽  
Vol 11 (05) ◽  
pp. 1350020 ◽  
Author(s):  
HONGWEI SUN ◽  
QIANG WU

We study the asymptotical properties of indefinite kernel network with coefficient regularization and dependent sampling. The framework under investigation is different from classical kernel learning. Positive definiteness is not required by the kernel function and the samples are allowed to be weakly dependent with the dependence measured by a strong mixing condition. By a new kernel decomposition technique introduced in [27], two reproducing kernel Hilbert spaces and their associated kernel integral operators are used to characterize the properties and learnability of the hypothesis function class. Capacity independent error bounds and learning rates are deduced.


2014 ◽  
Vol 9 (4) ◽  
pp. 827-931 ◽  
Author(s):  
Joseph A. Ball ◽  
Dmitry S. Kaliuzhnyi-Verbovetskyi ◽  
Cora Sadosky ◽  
Victor Vinnikov

2009 ◽  
Vol 80 (3) ◽  
pp. 430-453 ◽  
Author(s):  
JOSEF DICK

AbstractWe give upper bounds on the Walsh coefficients of functions for which the derivative of order at least one has bounded variation of fractional order. Further, we also consider the Walsh coefficients of functions in periodic and nonperiodic reproducing kernel Hilbert spaces. A lower bound which shows that our results are best possible is also shown.


2017 ◽  
Vol 87 (2) ◽  
pp. 225-244 ◽  
Author(s):  
Rani Kumari ◽  
Jaydeb Sarkar ◽  
Srijan Sarkar ◽  
Dan Timotin

2018 ◽  
Vol 45 (2) ◽  
pp. 869-896 ◽  
Author(s):  
Parag Bobade ◽  
Suprotim Majumdar ◽  
Savio Pereira ◽  
Andrew J. Kurdila ◽  
John B. Ferris

Sign in / Sign up

Export Citation Format

Share Document