Regularization by Denoising for simultaneous source separation
Denoisers can help solve inverse problems via a recently proposed framework known as regularization by denoising (RED). The RED approach defines the regularization term of the inverse problem via explicit denoising engines. Simultaneous source separation techniques, being themselves a combination of inversion and denoising methods, provide a formidable field to explore RED. We investigate the applicability of RED to simultaneous-source data processing and introduce a deblending algorithm named REDeblending (RDB). The formulation permits developing deblending algorithms where the user can select any denoising engine that satisfies RED conditions. Two popular denoisers are tested, but the method is not limited to them: frequency-wavenumber thresholding and singular spectrum analysis. We offer numerical blended data examples to showcase the performance of RDB via numerical experiments.