A Framework for Simulation-Based Structure and Parameter Optimization of Discrete-Event Systems

Author(s):  
Olaf Hagendorf ◽  
Thorsten Pawletta
Author(s):  
Kyung-Min Seo ◽  
Hae Sang Song ◽  
Se Jung Kwon ◽  
Tag Gon Kim

Modeling and simulation (M&S) has long played an important role in developing tactics and evaluating the measure of effectiveness (MOE) for the underwater warfare system. In simulation-based acquisition, M&S technology facilitates decisions about future equipment procurements, such as a mobile decoy or a torpedo. In addition, assessment of submarine tactical development, during an engagement against a torpedo, can be conducted using M&S techniques. This paper presents a case study that applies discrete event systems specification-based M&S technology to develop a simulation of an underwater warfare system, specifically, an anti-torpedo combat system, to analyze the MOE of the system. The entity models required for M&S are divided into three sub-models: controller, maneuver, and sensor model. The developed simulation allows us to conduct a statistical evaluation of the overall underwater warfare system under consideration, an assessment of the anti-torpedo countermeasure’s effectiveness, and an assessment of tactics development of the underwater vehicle. Moreover, it can be utilized to support the decision-making process for future equipment procurements. In order to analyze the system effectiveness, we performed extensive combat experiments by varying parameters, such as various tactics and weapon performance. The experimental results show how the factors influence the MOEs of the underwater warfare system.


Sign in / Sign up

Export Citation Format

Share Document