scholarly journals Propagation of chaos for mean field rough differential equations

2021 ◽  
Vol 49 (2) ◽  
Author(s):  
Ismaël Bailleul ◽  
Rémi Catellier ◽  
François Delarue
2016 ◽  
Vol 166 (2) ◽  
pp. 211-229 ◽  
Author(s):  
Li Chen ◽  
Simone Göttlich ◽  
Qitao Yin

Author(s):  
Elena Adomaitienė ◽  
Skaidra Bumelienė ◽  
Gytis Mykolaitis ◽  
Arūnas Tamaševičius

A control method for desynchronizing an array of mean-field coupled FitzHugh–Nagumo-type oscillators is described. The technique is based on applying an adjustable DC voltage source to the coupling node. Both, numerical solution of corresponding nonlinear differential equations and hardware experiments with a nonlinear electrical circuit have been performed.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hui Min ◽  
Ying Peng ◽  
Yongli Qin

We discuss a new type of fully coupled forward-backward stochastic differential equations (FBSDEs) whose coefficients depend on the states of the solution processes as well as their expected values, and we call them fully coupled mean-field forward-backward stochastic differential equations (mean-field FBSDEs). We first prove the existence and the uniqueness theorem of such mean-field FBSDEs under some certain monotonicity conditions and show the continuity property of the solutions with respect to the parameters. Then we discuss the stochastic optimal control problems of mean-field FBSDEs. The stochastic maximum principles are derived and the related mean-field linear quadratic optimal control problems are also discussed.


Sign in / Sign up

Export Citation Format

Share Document