dc voltage
Recently Published Documents


TOTAL DOCUMENTS

2239
(FIVE YEARS 627)

H-INDEX

53
(FIVE YEARS 7)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 336
Author(s):  
Yu Shang ◽  
Qiang Liu ◽  
Chen Mao ◽  
Sen Wang ◽  
Fan Wang ◽  
...  

Cellulose insulation polymer material is widely used in oil immersed bushing. Moisture is one of the important reasons for the deterioration of cellulose polymer insulation, which seriously threatens the safe and stable operation of bushing. It is significant to study the polarization and depolarization behavior of oil-immersed cellulose polymer insulation with different moisture condition under higher voltage. Based on polarization/depolarization current method and charge difference method, the polarization/depolarization current, interfacial polarization current and electrical conductivity of cellulose polymer under different DC voltages and humidity were obtained. Based on molecular-dynamics simulation, the effect of moisture on cellulose polymer insulation was analyzed. The results show that the polarization and depolarization currents become larger with the increase in DC voltage and moisture. The higher applied voltage will accelerate the charge carrier motion. The ionization of water molecules will produce more charge carriers. Thus, high DC voltage and moisture content will increase the interface polarization current. Increased moisture content results in more charge carriers ionized by water molecules. In addition, the invasion of moisture will reduce the band width of cellulose polymer and enhance its electrostatic potential, so as to improve its overall electrical conductivity. This paper provides a reference for analyzing the polarization characteristics of charge carriers in cellulose polymer insulation.


High Voltage ◽  
2022 ◽  
Author(s):  
Mehmet Murat Ispirli ◽  
Özcan Kalenderli ◽  
Florian Seifert ◽  
Michael Rock ◽  
Bülent Oral

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Jinlei Chen ◽  
Sheng Wang ◽  
Carlos E. Ugalde-Loo ◽  
Wenlong Ming ◽  
Oluwole D. Adeuyi ◽  
...  

Although the control of modular multi-level converters (MMCs) in high-voltage direct-current (HVDC) networks has become a mature subject these days, the potential for adverse interactions between different converter controls remains an under-researched challenge attracting the attention from both academia and industry. Even for point-to-point HVDC links (i.e., simple HVDC systems), converter control interactions may result in the shifting of system operating voltages, increased power losses, and unintended power imbalances at converter stations. To bridge this research gap, the risk of multiple cross-over of control characteristics of MMCs is assessed in this paper through mathematical analysis, computational simulation, and experimental validation. Specifically, the following point-to-point HVDC link configurations are examined: (1) one MMC station equipped with a current versus voltage droop control and the other station equipped with a constant power control; and (2) one MMC station equipped with a power versus voltage droop control and the other station equipped with a constant current control. Design guidelines for droop coefficients are provided to prevent adverse control interactions. A 60-kW MMC test-rig is used to experimentally verify the impact of multiple crossing of control characteristics of the DC system configurations, with results verified through software simulation in MATLAB/Simulink using an open access toolbox. Results show that in operating conditions of 650 V and 50 A (DC voltage and DC current), drifts of 7.7% in the DC voltage and of 10% in the DC current occur due to adverse control interactions under the current versus voltage droop and power control scheme. Similarly, drifts of 7.7% both in the DC voltage and power occur under the power versus voltage droop and current control scheme.


2022 ◽  
Author(s):  
Satish Kumar Ancha

The PVF or PV<sup>2</sup>F<sup> </sup>double droop control is commended for its ability to regulate both the dc voltage and frequency in a decentralized approach. However, a convincing response is not achieved due to an interaction between the droop characteristics of dc voltage and frequency. This interaction affects the dc voltage and frequency support of the AC system surrounded Multi-Terminal HVDC (AC-MTDC) grid. To overcome this effect, a Duo control strategy is proposed in this paper, which takes advantage of a Bi-polar Voltage Source Converter (B-VSC) topology in the MTDC grid. The virtue of proposed control technique is emphasized by comparing it with the existing $ PV<sup>2</sup>F double droop control along with three case studies and two test systems. The validation of interaction less Duo control strategy is carried out on five terminal CIGRE DC grid benchmark model integrated into two area power system (AC-MTDC grid-1) and New England IEEE 39 bus system (AC-MTDC grid-2). These test systems are simulated in PSCAD/EMTDC software.


2022 ◽  
Author(s):  
Satish Kumar Ancha

The PVF or PV<sup>2</sup>F<sup> </sup>double droop control is commended for its ability to regulate both the dc voltage and frequency in a decentralized approach. However, a convincing response is not achieved due to an interaction between the droop characteristics of dc voltage and frequency. This interaction affects the dc voltage and frequency support of the AC system surrounded Multi-Terminal HVDC (AC-MTDC) grid. To overcome this effect, a Duo control strategy is proposed in this paper, which takes advantage of a Bi-polar Voltage Source Converter (B-VSC) topology in the MTDC grid. The virtue of proposed control technique is emphasized by comparing it with the existing $ PV<sup>2</sup>F double droop control along with three case studies and two test systems. The validation of interaction less Duo control strategy is carried out on five terminal CIGRE DC grid benchmark model integrated into two area power system (AC-MTDC grid-1) and New England IEEE 39 bus system (AC-MTDC grid-2). These test systems are simulated in PSCAD/EMTDC software.


2022 ◽  
Vol 23 (1) ◽  
pp. 434-446
Author(s):  
Mohamad Safiddin Mohd Tahir ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Azni Nabela Wahid

 In micro-scale energy harvesting, piezoelectric (PZT) energy harvesters can adequately convert kinetic energy from ambient vibration to electrical energy. However, due to the random motion and frequency of human motion, the piezoelectric beam cannot efficiently harvest energy from ambient sources. This research highlights the ability of piezoelectric energy harvester constructed using a PZT-5H cantilever beam to generate voltage at any input frequency from human motion. An eccentric mass is used to convert the linear motion of human movement to angular motion. Then, using a magnetic plucking technique, the piezoelectric beam is deflected to its maximum possible deflection each time the eccentric mass oscillates past the beam, ensuring the highest stress is induced and hence the highest current is generated. For testing works, the frequency of oscillation of the eccentric mass is controlled using an Arduino Uno microcontroller. In this work, it is found that when given any input frequencies, the energy harvester produced a consistent AC voltage peak around 5.8 Vac. On the other hand, the DC voltage produced varies with respect to the input frequency due to the number of times the peak AC signal is generated. The highest DC voltage produced in this work is 3.7 Vdc, at 5 Hz, which is within the frequency range of human motion. This research demonstrated that energy can still be effectively harvested at any given low-frequency input, in the condition that the piezoelectric beam is being deflected at its maximum. ABSTRAK: Piezoelektrik dapat mengubah tenaga kinetik daripada getaran persekitaran kepada tenaga elektrik melalui penjanaan tenaga berskala mikro. Namun, PZT tidak dapat menjana tenaga dengan berkesan dari sumber persekitaran kerana pergerakan dan kekerapan pergerakan manusia adalah rawak. Kajian ini adalah mengenai keupayaan penuai tenaga piezoelektrik menggunakan bilah kantilever PZT-5H bagi menjana voltan pada sebarang frekuensi menerusi gerakan manusia. Jisim eksentrik digunakan bagi menukar gerakan linear manusia kepada gerakan putaran. Kemudian, teknik penjanaan piezoelektrik secara magnetik digunakan bagi memesongkan bilah piezoelektrik ke tahap maksimum. Bagi memastikan tenaga tertinggi dihasilkan, jisim eksentrik perlu berayun melepasi bilah PZT. Ayunan frekuensi jisim eksentrik ini dikawal melalui kawalan mikro Arduino Uno. Dapatan kajian menunjukkan bagi setiap frekuensi input, PZT ini dapat menghasilkan voltan AC yang konsisten, iaitu sekitar 5.8 Vac. Namun, voltan DC maksimum yang terhasil adalah berbeza-beza bagi setiap frekuensi input, iaitu berdasarkan bilangan kekerapan maksimum isyarat AC yang terhasil. Voltan DC tertinggi ialah 3.7 Vdc, pada 5 Hz, iaitu pada kadar frekuensi gerakan manusia. Ini menunjukkan bahawa tenaga masih dapat dihasilkan secara berkesan pada frekuensi rendah, dengan syarat bilah piezoelektrik terpesong pada tahap maksimum.


2022 ◽  
pp. 440-470
Author(s):  
Arezki Fekik ◽  
Hakim Denoun ◽  
Ahmad Taher Azar ◽  
Mustapha Zaouia ◽  
Nabil Benyahia ◽  
...  

In this chapter, a new technique has been proposed for reducing the harmonic content of a three-phase PWM rectifier connected to the networks with a unit power factor and also providing decoupled control of the active and reactive instantaneous power. This technique called direct power control (DPC) is based on artificial neural network (ANN) controller, without line voltage sensors. The control technique is based on well-known direct torque control (DTC) ideas for the induction motor, which is applied to eliminate the harmonic of the line current and compensate for the reactive power. The main idea of this control is based on active and reactive power control loops. The DC voltage capacitor is regulated by the ANN controller to keep it constant and also provides a stable active power exchange. The simulation results are very satisfactory in the terms of stability and total harmonic distortion (THD) of the line current and the unit power factor.


High Voltage ◽  
2021 ◽  
Author(s):  
Haotian Wang ◽  
Cong He ◽  
Ruochen Guo ◽  
Xuan Meng ◽  
Wenze Yuan ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Taige Chen

This paper investigates the topic of voltage multiplication, which converts a low AC voltage source to a high DC voltage source. Several designs are evaluated, such as the voltage doubler, the voltage tripler, and the voltage quadrupler. It is discovered that the input frequency and the capacitance do not affect the output voltage. This design can be extended to any integer multiples of the input voltage.


Author(s):  
Adegoke B. O. ◽  
Olokun M. S. ◽  
Agboola S.

Inception of COVID ’19 has brought new normal globally. Contagious nature of various infectious diseases necessitated frequent hand washing in order to reduce rate of contamination and community transmission. The need to contain the spread of COVID-19 necessitated the development of an Automatic Hand Sanitizing System (AHSS). The AHSS employed proximity sensor (IR) to sense the hand and actuate the 5V DC submersible pumps in charge of both water and sanitizer units of the AHSS. The DC voltage that powered the system was harvested from the Sun with the help of 5v Photovoltaic cell connected to a controlled charging circuit. The system responded to presence of user object within the active zone of the IR proximity sensors. This presence sends signal to the pumps to release either the Sanitizer/water. Evaluation based on Delay Time (DT), Average DT (ADT), True Positive (TP), False Positive (FP), Unable to Detect (UTD) and Accuracy (A) was conducted. The system was tested 180 times among students of School of Engineering, Federal Polytechnic, Ile-Oluji (FEDPOLEL). Results of evaluation indicate 12s, 180, 0.00, 0.00 and 100% for ADT, TP, FP, UTD and Accuracy, respectively. Accuracy of the designed AHSS was encouraging. An AHSS that can notify user about level of water and sanitizer, also test for presence of COVID-19 infection can also be designed and constructed.


Sign in / Sign up

Export Citation Format

Share Document