scholarly journals Weierstrass equations for all elliptic fibrations on the modular $K3$ surface associated to $\Gamma_1(7)$

2015 ◽  
Vol 45 (5) ◽  
pp. 1481-1509
Author(s):  
Odile Lecacheux
Author(s):  
Marie José Bertin ◽  
Alice Garbagnati ◽  
Ruthi Hortsch ◽  
Odile Lecacheux ◽  
Makiko Mase ◽  
...  

2009 ◽  
Vol 20 (06) ◽  
pp. 727-750 ◽  
Author(s):  
SHOUHEI MA

Using lattice theory, we establish a one-to-one correspondence between the set of Fourier–Mukai partners of a projective K3 surface and the set of 0-dimensional standard cusps of its Kahler moduli. We also study the relation between twisted Fourier–Mukai partners and general 0-dimensional cusps, and the relation between Fourier–Mukai partners with elliptic fibrations and certain 1-dimensional cusps.


2013 ◽  
Vol 57 (1) ◽  
pp. 253-267 ◽  
Author(s):  
Viacheslav V. Nikulin

AbstractThis paper consists mainly of a review and applications of our old results relating to the title. We discuss how many elliptic fibrations and elliptic fibrations with infinite automorphism groups (or Mordell–Weil groups) an algebraic K3 surface over an algebraically closed field can have. As examples of applications of the same ideas, we also consider K3 surfaces with exotic structures: with a finite number of non-singular rational curves, with a finite number of Enriques involutions, and with naturally arithmetic automorphism groups.


Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


Sign in / Sign up

Export Citation Format

Share Document