Asymptotic behaviour for random walks in random environments

1999 ◽  
Vol 36 (2) ◽  
pp. 334-349 ◽  
Author(s):  
S. Alili

In this paper we consider limit theorems for a random walk in a random environment, (Xn). Known results (recurrence-transience criteria, law of large numbers) in the case of independent environments are naturally extended to the case where the environments are only supposed to be stationary and ergodic. Furthermore, if ‘the fluctuations of the random transition probabilities around are small’, we show that there exists an invariant probability measure for ‘the environments seen from the position of (Xn)’. In the case of uniquely ergodic (therefore non-independent) environments, this measure exists as soon as (Xn) is transient so that the ‘slow diffusion phenomenon’ does not appear as it does in the independent case. Thus, under regularity conditions, we prove that, in this case, the random walk satisfies a central limit theorem for any fixed environment.

1999 ◽  
Vol 36 (02) ◽  
pp. 334-349 ◽  
Author(s):  
S. Alili

In this paper we consider limit theorems for a random walk in a random environment, (X n ). Known results (recurrence-transience criteria, law of large numbers) in the case of independent environments are naturally extended to the case where the environments are only supposed to be stationary and ergodic. Furthermore, if ‘the fluctuations of the random transition probabilities around are small’, we show that there exists an invariant probability measure for ‘the environments seen from the position of (X n )’. In the case of uniquely ergodic (therefore non-independent) environments, this measure exists as soon as (X n ) is transient so that the ‘slow diffusion phenomenon’ does not appear as it does in the independent case. Thus, under regularity conditions, we prove that, in this case, the random walk satisfies a central limit theorem for any fixed environment.


2001 ◽  
Vol 38 (4) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Zd. The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


2001 ◽  
Vol 38 (04) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Z d . The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


Author(s):  
NADINE GUILLOTIN-PLANTARD ◽  
RENÉ SCHOTT

Quantum Bernoulli random walks can be realized as random walks on the dual of SU(2). We use this realization in order to study a model of dynamic quantum Bernoulli random walk with time-dependent transitions. For the corresponding dynamic random walk on the dual of SU(2), we prove several limit theorems (local limit theorem, central limit theorem, law of large numbers, large deviation principle). In addition, we characterize a large class of transient dynamic random walks.


1989 ◽  
Vol 21 (03) ◽  
pp. 491-512
Author(s):  
B. Gail Ivanoff

We consider a multitype branching random walk with independent Poisson random fields of each type of particle initially. The existence of limiting random fields as the generation number, is studied, when the intensity of the initial field is renormalized in such a way that the mean measures converge. Spatial laws of large numbers and central limit theorems are given for the limiting random field, when it is non-trivial.


1989 ◽  
Vol 21 (3) ◽  
pp. 491-512 ◽  
Author(s):  
B. Gail Ivanoff

We consider a multitype branching random walk with independent Poisson random fields of each type of particle initially. The existence of limiting random fields as the generation number, is studied, when the intensity of the initial field is renormalized in such a way that the mean measures converge. Spatial laws of large numbers and central limit theorems are given for the limiting random field, when it is non-trivial.


Author(s):  
Giuseppe Cavaliere ◽  
Heino Bohn Nielsen ◽  
Anders Rahbek

While often simple to implement in practice, application of the bootstrap in econometric modeling of economic and financial time series requires establishing validity of the bootstrap. Establishing bootstrap asymptotic validity relies on verifying often nonstandard regularity conditions. In particular, bootstrap versions of classic convergence in probability and distribution, and hence of laws of large numbers and central limit theorems, are critical ingredients. Crucially, these depend on the type of bootstrap applied (e.g., wild or independently and identically distributed (i.i.d.) bootstrap) and on the underlying econometric model and data. Regularity conditions and their implications for possible improvements in terms of (empirical) size and power for bootstrap-based testing differ from standard asymptotic testing, which can be illustrated by simulations.


Sign in / Sign up

Export Citation Format

Share Document