The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Author(s):  
Erick Delage ◽  
Ahmed Saif

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.

Author(s):  
Burak Kocuk

In this paper, we consider a Kullback-Leibler divergence constrained distributionally robust optimization model. This model considers an ambiguity set that consists of all distributions whose Kullback-Leibler divergence to an empirical distribution is bounded. Utilizing the fact that this divergence measure has an exponential cone representation, we obtain the robust counterpart of the Kullback-Leibler divergence constrained distributionally robust optimization problem as a dual exponential cone constrained program under mild assumptions on the underlying optimization problem. The resulting conic reformulation of the original optimization problem can be directly solved by a commercial conic programming solver. We specialize our generic formulation to two classical optimization problems, namely, the Newsvendor Problem and the Uncapacitated Facility Location Problem. Our computational study in an out-of-sample analysis shows that the solutions obtained via the distributionally robust optimization approach yield significantly better performance in terms of the dispersion of the cost realizations while the central tendency deteriorates only slightly compared to the solutions obtained by stochastic programming.


Author(s):  
Lei Xu ◽  
Tsan Sheng (Adam) Ng ◽  
Alberto Costa

In this paper, we develop a distributionally robust optimization model for the design of rail transit tactical planning strategies and disruption tolerance enhancement under downtime uncertainty. First, a novel performance function evaluating the rail transit disruption tolerance is proposed. Specifically, the performance function maximizes the worst-case expected downtime that can be tolerated by rail transit networks over a family of probability distributions of random disruption events given a threshold commuter outflow. This tolerance function is then applied to an optimization problem for the planning design of platform downtime protection and bus-bridging services given budget constraints. In particular, our implementation of platform downtime protection strategy relaxes standard assumptions of robust protection made in network fortification and interdiction literature. The resulting optimization problem can be regarded as a special variation of a two-stage distributionally robust optimization model. In order to achieve computational tractability, optimality conditions of the model are identified. This allows us to obtain a linear mixed-integer reformulation that can be solved efficiently by solvers like CPLEX. Finally, we show some insightful results based on the core part of Singapore Mass Rapid Transit Network.


2020 ◽  
Vol 54 (6) ◽  
pp. 1439-1445
Author(s):  
Prahalad Venkateshan

In this paper, it is shown that the polynomially bounded enumerative procedure to solve the facility location problem with limited distances, originally described by Drezner, Mehrez, and Wesolowsky [Drezner Z, Mehrez A, Wesolowsky GO (1991) The facility location problem with limited distances. Transportation Sci. 25(3):183–187.], and subsequently corrected by Aloise, Hansen, and Liberti [Aloise D, Hansen P, Liberti L (2012) An improved column generation algorithm for minimum sum-of-squares clustering. Math. Programming 131(1–2):195–220.], can still fail to optimally solve the problem. Conditions under which the procedures succeed are identified. A new modified algorithm is presented that solves the facility location problem with limited distances. It is further shown that the proposed correction is complete in that it does not require further corrections.


2012 ◽  
Vol 1 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Igor Litvinchev ◽  
Edith L. Ozuna

In the two-stage capacitated facility location problem, a single product is produced at some plants in order to satisfy customer demands. The product is transported from these plants to some depots and then to the customers. The capacities of the plants and depots are limited. The aim is to select cost minimizing locations from a set of potential plants and depots. This cost includes fixed cost associated with opening plants and depots, and variable cost associated with both transportation stages. In this work, two different mixed integer linear programming formulations are considered for the problem. Several Lagrangian relaxations are analyzed and compared, and a Lagrangian heuristic producing feasible solutions is presented. The results of a computational study are reported.


Sign in / Sign up

Export Citation Format

Share Document