Optimizing Disruption Tolerance for Rail Transit Networks Under Uncertainty

Author(s):  
Lei Xu ◽  
Tsan Sheng (Adam) Ng ◽  
Alberto Costa

In this paper, we develop a distributionally robust optimization model for the design of rail transit tactical planning strategies and disruption tolerance enhancement under downtime uncertainty. First, a novel performance function evaluating the rail transit disruption tolerance is proposed. Specifically, the performance function maximizes the worst-case expected downtime that can be tolerated by rail transit networks over a family of probability distributions of random disruption events given a threshold commuter outflow. This tolerance function is then applied to an optimization problem for the planning design of platform downtime protection and bus-bridging services given budget constraints. In particular, our implementation of platform downtime protection strategy relaxes standard assumptions of robust protection made in network fortification and interdiction literature. The resulting optimization problem can be regarded as a special variation of a two-stage distributionally robust optimization model. In order to achieve computational tractability, optimality conditions of the model are identified. This allows us to obtain a linear mixed-integer reformulation that can be solved efficiently by solvers like CPLEX. Finally, we show some insightful results based on the core part of Singapore Mass Rapid Transit Network.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2981 ◽  
Author(s):  
Mohammad Seydali Seyf Abad ◽  
Jin Ma ◽  
Ahmad Ahmadyar ◽  
Hesamoddin Marzooghi

Uncertainties associated with the loads and the output power of distributed generations create challenges in quantifying the integration limits of distributed generations in distribution networks, i.e., hosting capacity. To address this, we propose a distributionally robust optimization-based method to determine the hosting capacity considering the voltage rise, thermal capacity of the feeders and short circuit level constraints. In the proposed method, the uncertain variables are modeled as stochastic variables following ambiguous distributions defined based on the historical data. The distributionally robust optimization model guarantees that the probability of the constraint violation does not exceed a given risk level, which can control robustness of the solution. To solve the distributionally robust optimization model of the hosting capacity, we reformulated it as a joint chance constrained problem, which is solved using the sample average approximation technique. To demonstrate the efficacy of the proposed method, a modified IEEE 33-bus distribution system is used as the test-bed. Simulation results demonstrate how the sample size of historical data affects the hosting capacity. Furthermore, using the proposed method, the impact of electric vehicles aggregated demand and charging stations are investigated on the hosting capacity of different distributed generation technologies.


Author(s):  
Erick Delage ◽  
Ahmed Saif

Randomized decision making refers to the process of making decisions randomly according to the outcome of an independent randomization device, such as a dice roll or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, in which deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has recently been shown that using a randomized, rather than a deterministic, strategy in nonconvex distributionally robust optimization (DRO) problems can lead to improvements in their objective values. It is still unknown, though, what is the magnitude of improvement that can be attained through randomization or how to numerically find the optimal randomized strategy. In this paper, we study the value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound is tight. We then develop algorithmic procedures, based on column generation, for solving both single- and two-stage linear DRO problems with randomization that can be used with both moment-based and Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated facility location problem and report numerical results that show the quality of our bounds, the computational efficiency of the proposed solution method, and the magnitude of performance improvement achieved by randomized decisions. Summary of Contribution: In this paper, we present both theoretical results and algorithmic tools to identify optimal randomized strategies for discrete distributionally robust optimization (DRO) problems and evaluate the performance improvements that can be achieved when using them rather than classical deterministic strategies. On the theory side, we provide improvement bounds based on continuous relaxation and identify the conditions under which these bound are tight. On the algorithmic side, we propose a finitely convergent, two-layer, column-generation algorithm that iterates between identifying feasible solutions and finding extreme realizations of the uncertain parameter. The proposed algorithm was implemented to solve distributionally robust stochastic versions of three classical optimization problems and extensive numerical results are reported. The paper extends a previous, purely theoretical work of the first author on the idea of randomized strategies in nonconvex DRO problems by providing useful bounds and algorithms to solve this kind of problems.


Author(s):  
Burak Kocuk

In this paper, we consider a Kullback-Leibler divergence constrained distributionally robust optimization model. This model considers an ambiguity set that consists of all distributions whose Kullback-Leibler divergence to an empirical distribution is bounded. Utilizing the fact that this divergence measure has an exponential cone representation, we obtain the robust counterpart of the Kullback-Leibler divergence constrained distributionally robust optimization problem as a dual exponential cone constrained program under mild assumptions on the underlying optimization problem. The resulting conic reformulation of the original optimization problem can be directly solved by a commercial conic programming solver. We specialize our generic formulation to two classical optimization problems, namely, the Newsvendor Problem and the Uncapacitated Facility Location Problem. Our computational study in an out-of-sample analysis shows that the solutions obtained via the distributionally robust optimization approach yield significantly better performance in terms of the dispersion of the cost realizations while the central tendency deteriorates only slightly compared to the solutions obtained by stochastic programming.


2020 ◽  
Author(s):  
Bart P. G. Van Parys ◽  
Peyman Mohajerin Esfahani ◽  
Daniel Kuhn

We study stochastic programs where the decision maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, that is, a predictor, and an optimizer of the estimated cost function that serves as a near-optimal candidate decision, that is, a prescriptor. As functions of the data, predictors and prescriptors constitute statistical estimators. We propose a meta-optimization problem to find the least conservative predictors and prescriptors subject to constraints on their out-of-sample disappointment. The out-of-sample disappointment quantifies the probability that the actual expected cost of the candidate decision under the unknown true distribution exceeds its predicted cost. Leveraging tools from large deviations theory, we prove that this meta-optimization problem admits a unique solution: The best predictor-prescriptor-pair is obtained by solving a distributionally robust optimization problem over all distributions within a given relative entropy distance from the empirical distribution of the data. This paper was accepted by Chung Piaw Teo, optimization.


Sign in / Sign up

Export Citation Format

Share Document