3D Super-resolution Imaging of Microtubules with a Double Helix Point Spread Function Microscope

Author(s):  
Ginni Grover ◽  
Keith DeLuca ◽  
Sean Quirin ◽  
Jennifer DeLuca ◽  
Rafael Piestun
2017 ◽  
Vol 112 (7) ◽  
pp. 1444-1454 ◽  
Author(s):  
Alexander R. Carr ◽  
Aleks Ponjavic ◽  
Srinjan Basu ◽  
James McColl ◽  
Ana Mafalda Santos ◽  
...  

2014 ◽  
Vol 141 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Mathew H. Horrocks ◽  
Matthieu Palayret ◽  
David Klenerman ◽  
Steven F. Lee

Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 451-458 ◽  
Author(s):  
Chunqi Jin ◽  
Jihua Zhang ◽  
Chunlei Guo

AbstractMetasurfaces are two-dimensional arrangements of antennas that control the propagation of electromagnetic waves with a subwavelength thickness and resolution. Previously, metasurfaces have been mostly used to obtain the function of a single optical element. Here, we demonstrate a plasmonic metasurface that represents the combination of a phase mask generating a double-helix point spread function (DH-PSF) and a metalens for imaging. DH-PSF has been widely studied in three-dimensional (3D) super-resolution imaging, biomedical imaging, and particle tracking, but the current DH-PSFs are inefficient, bulky, and difficult to integrate. The multielement metasurface, which we label as DH-metalens, enables a DH-PSF with transfer efficiency up to 70.3% and an ultrahigh level of optical system integration, three orders of magnitude smaller than those realized by conventional phase elements. Moreover, the demonstrated DH-metalens can work in broadband visible wavelengths and in multiple incident polarization states. Finally, we demonstrate the application of the DH-metalens in 3D imaging of point sources. These results pave ways for realizing integrated DH-PSFs, which have applications in 3D super-resolution microscopy, single particle tracking/imaging, and machine vision.


2012 ◽  
Vol 20 (24) ◽  
pp. 26681 ◽  
Author(s):  
Ginni Grover ◽  
Keith DeLuca ◽  
Sean Quirin ◽  
Jennifer DeLuca ◽  
Rafael Piestun

2013 ◽  
Vol 104 (2) ◽  
pp. 668a
Author(s):  
Shu Jia ◽  
Joshua C. Vaughan ◽  
Xiaowei Zhuang

Sign in / Sign up

Export Citation Format

Share Document