Numerical optical computing in the residue number system with outer-product lookup tables

1989 ◽  
Vol 14 (16) ◽  
pp. 847 ◽  
Author(s):  
Mark L. Heinrich ◽  
Ravindra A. Athale ◽  
Michael W. Haney
2017 ◽  
Vol 8 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Jean-Claude Bajard ◽  
Julien Eynard ◽  
Nabil Merkiche

Author(s):  
Mikhail Selianinau

AbstractIn this paper, we deal with the critical problem of performing non-modular operations in the Residue Number System (RNS). The Chinese Remainder Theorem (CRT) is widely used in many modern computer applications. Throughout the article, an efficient approach for implementing the CRT algorithm is described. The structure of the rank of an RNS number, a principal positional characteristic of the residue code, is investigated. It is shown that the rank of a number can be represented by a sum of an inexact rank and a two-valued correction to it. We propose a new variant of minimally redundant RNS, which provides low computational complexity for the rank calculation, and its effectiveness analyzed concerning conventional non-redundant RNS. Owing to the extension of the residue code, by adding the excess residue modulo 2, the complexity of the rank calculation goes down from $O\left (k^{2}\right )$ O k 2 to $O\left (k\right )$ O k with respect to required modular addition operations and lookup tables, where k equals the number of non-redundant RNS moduli.


Sign in / Sign up

Export Citation Format

Share Document