scholarly journals Delay-Dependent Stability Criteria for Continuous Systems with Two Additive Interval Time-Varying Delays and Nonlinear Perturbations

2017 ◽  
Vol 10 (4) ◽  
pp. 145-158 ◽  
Author(s):  
Jianmin Jiao ◽  
Xiaojun Sun
2013 ◽  
Vol 427-429 ◽  
pp. 1306-1310
Author(s):  
Jun Jun Hui ◽  
He Xin Zhang ◽  
Fei Meng ◽  
Xin Zhou

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.


2011 ◽  
Vol 48-49 ◽  
pp. 734-739 ◽  
Author(s):  
Dong Sheng Xu ◽  
Jun Kang Tian

This paper is concerned with delay-dependent stability for systems with interval time varying delay. By defining a new Lyapunov functional which contains a triple-integral term with the idea of decomposing the delay interval of time-varying delay, an improved criterion of asymptotic stability is derived in term of linear matrix inequalities. The criterion proves to be less conservative with fewer matrix variables than some previous ones. Finally, a numerical example is given to show the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Zhou ◽  
Hexin Zhang ◽  
Xiaoxiang Hu ◽  
Junjun Hui ◽  
Tianmei Li

This paper investigated delay-dependent robust stability criteria for systems with interval time-varying delays and nonlinear perturbations. A delay-partitioning approach is used in this paper, the delay-interval is partitioned into multiple equidistant subintervals, a new Lyapunov-Krasovskii (L-K) functional contains some triple-integral terms, and augment terms are introduced on these intervals. Then, by using integral inequalities method together with free-weighting matrix approach, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities (LMIs), which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document