Live migration of virtual machines with their local persistent storage in a data intensive cloud

Author(s):  
P. Santhi Thilagam ◽  
Abhinit Modi ◽  
Raghavendra Achar
Author(s):  
Francisco J. Clemente-Castello ◽  
Juan Carlos Fernandez ◽  
Rafael Mayo ◽  
Enrique S. Quintana-Orti

Author(s):  
Valentin Tablan ◽  
Ian Roberts ◽  
Hamish Cunningham ◽  
Kalina Bontcheva

Cloud computing is increasingly being regarded as a key enabler of the ‘democratization of science’, because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research—GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost–benefit analysis and usage evaluation.


2022 ◽  
Vol 71 (2) ◽  
pp. 3019-3033
Author(s):  
Tahir Alyas ◽  
Iqra Javed ◽  
Abdallah Namoun ◽  
Ali Tufail ◽  
Sami Alshmrany ◽  
...  

Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

In virtualized servers, with live migration technique pages are copied from one physical machine to another while the virtual machine (VM) is running. The dynamic migration of virtual machines encumbers the data center which in turn reduces the performance of applications running on that particular physical machine. A considerable number of studies have been carried out in the area of performance evaluation during live VM migration.  However, all the aspects related to the migration process have not been examined for the performance assessment. In this paper, we propose a novel approach to evaluate the performance during migration process in different types of coupled machine environment. It is presented here that the state of art VM migration technology requires further improvement in realizing effective migration by monitoring comprehensive performance value. We introduced the parameter, θ, to compare performance value which can be used for controlling and halting unsuccessful migration and save significant amount of time in migration operation.  Our model is capable of analyzing real time scenario of cloud performance assessment targeting VM migration strategies. It also offers the possibility of further expanding to universal models for analyzing the performance variations that occurs as a result of VM migration.


Sign in / Sign up

Export Citation Format

Share Document