Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data

2002 ◽  
Vol 51 (2) ◽  
pp. 0-0 ◽  
Author(s):  
Song Jiang ◽  
Ping Zhang
2020 ◽  
Vol 237 (1) ◽  
pp. 347-382 ◽  
Author(s):  
Pedro Gabriel Fernández-Dalgo ◽  
Pierre Gilles Lemarié-Rieusset

Analysis ◽  
2008 ◽  
Vol 28 (1) ◽  
Author(s):  
Sadek Gala ◽  
Samia Benbernou

Consider the Navier–Stokes equations with the initial data a ∈


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Ruxu Lian ◽  
Jianwei Yang ◽  
Jian Liu

We consider the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficients and discontinuous initial data in this paper. For piecewise regular initial density with bounded jump discontinuity, we show that there exists a unique global piecewise regular solution. In particular, the jump of density decays exponentially in time and the piecewise regular solution tends to the equilibrium state exponentially ast→+∞.


Sign in / Sign up

Export Citation Format

Share Document