scholarly journals Prime II1 factors arising from irreducible lattices in products of rank one simple Lie groups

2019 ◽  
Vol 2019 (757) ◽  
pp. 197-246 ◽  
Author(s):  
Daniel Drimbe ◽  
Daniel Hoff ◽  
Adrian Ioana

AbstractWe prove that if Γ is an icc irreducible lattice in a product of connected non-compact rank one simple Lie groups with finite center, then the {\mathrm{II}_{1}} factor {L(\Gamma)} is prime. In particular, we deduce that the {\mathrm{II}_{1}} factors associated to the arithmetic groups {\mathrm{PSL}_{2}(\mathbb{Z}[\sqrt{d}])} and {\mathrm{PSL}_{2}(\mathbb{Z}[S^{-1}])} are prime for any square-free integer {d\geq 2} with {d\not\equiv 1~{}(\operatorname{mod}\,4)} and any finite non-empty set of primes S. This provides the first examples of prime {\mathrm{II}_{1}} factors arising from lattices in higher rank semisimple Lie groups. More generally, we describe all tensor product decompositions of {L(\Gamma)} for icc countable groups Γ that are measure equivalent to a product of non-elementary hyperbolic groups. In particular, we show that {L(\Gamma)} is prime, unless Γ is a product of infinite groups, in which case we prove a unique prime factorization result for {L(\Gamma)}.

1999 ◽  
Vol 85 (2) ◽  
pp. 169 ◽  
Author(s):  
Boris Goldfarb

We consider a class of relatively hyperbolic groups in the sense of Gromov and use an argument modeled after Carlsson-Pedersen to prove Novikov conjectures for these groups. This proof is related to [16,17] which dealt with arithmetic lattices in rank one symmetric spaces and some other arithmetic groups of higher rank. Here whe view the rank one lattices in this different larger context of relativve hyperbolicity which also inclues fundamental groups of pinched hyperbolic manifolds. Another large family of groups from this class is produced using combinatorial hyperbolization techniques.


Sign in / Sign up

Export Citation Format

Share Document