A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain

2019 ◽  
Vol 27 (5) ◽  
pp. 609-621 ◽  
Author(s):  
Fan Yang ◽  
Ni Wang ◽  
Xiao-Xiao Li ◽  
Can-Yun Huang

Abstract In this paper, an inverse problem to identify the initial value for high dimension time fractional diffusion equation on spherically symmetric domain is considered. This problem is ill-posed in the sense of Hadamard, so the quasi-boundary regularization method is proposed to solve the problem. The convergence estimates between the regularization solution and the exact solution are presented under the a priori and a posteriori regularization parameter choice rules. Numerical examples are provided to show the effectiveness and stability of the proposed method.

2020 ◽  
Vol 28 (2) ◽  
pp. 211-235
Author(s):  
Tran Bao Ngoc ◽  
Nguyen Huy Tuan ◽  
Mokhtar Kirane

AbstractIn this paper, we consider an inverse problem for a time-fractional diffusion equation with a nonlinear source. We prove that the considered problem is ill-posed, i.e., the solution does not depend continuously on the data. The problem is ill-posed in the sense of Hadamard. Under some weak a priori assumptions on the sought solution, we propose a new regularization method for stabilizing the ill-posed problem. We also provide a numerical example to illustrate our results.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1048
Author(s):  
Le Dinh Long ◽  
Yong Zhou ◽  
Tran Thanh Binh ◽  
Nguyen Can

We consider a time-fractional diffusion equation for an inverse problem to determine an unknown source term, whereby the input data is obtained at a certain time. In general, the inverse problems are ill-posed in the sense of Hadamard. Therefore, in this study, we propose a mollification regularization method to solve this problem. In the theoretical results, the error estimate between the exact and regularized solutions is given by a priori and a posteriori parameter choice rules. Besides, the proposed regularized methods have been verified by a numerical experiment.


Author(s):  
Zeting Liu ◽  
Shujuan Lü

Abstract:We consider the initial value problem of the time fractional diffusion equation on the whole line and the fractional derivative is described in Caputo sense. A fully discrete Hermite pseudospectral approximation scheme is structured basing Hermite-Gauss points in space and finite difference in time. Unconditionally stability and convergence are proved. Numerical experiments are presented and the results conform to our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document