scholarly journals Multi-Ricker Spectral Modeling in the S-transform Domain for Enhancing Vertical Resolution of Seismic Reflection Data

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Sonny Winardhi ◽  
Waskito Pranowo
Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V235-V247 ◽  
Author(s):  
Duan Li ◽  
John Castagna ◽  
Gennady Goloshubin

The frequency-dependent width of the Gaussian window function used in the S-transform may not be ideal for all applications. In particular, in seismic reflection prospecting, the temporal resolution of the resulting S-transform time-frequency spectrum at low frequencies may not be sufficient for certain seismic interpretation purposes. A simple parameterization of the generalized S-transform overcomes the drawback of poor temporal resolution at low frequencies inherent in the S-transform, at the necessary expense of reduced frequency resolution. This is accomplished by replacing the frequency variable in the Gaussian window with a linear function containing two coefficients that control resolution variation with frequency. The linear coefficients can be directly calculated by selecting desired temporal resolution at two frequencies. The resulting transform conserves energy and is readily invertible by an inverse Fourier transform. This modification of the S-transform, when applied to synthetic and real seismic data, exhibits improved temporal resolution relative to the S-transform and improved resolution control as compared with other generalized S-transform window functions.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. WB235-WB245 ◽  
Author(s):  
Yang Liu ◽  
Sergey Fomel

Many of the geophysical data-analysis problems such as signal-noise separation and data regularization are conveniently formulated in a transform domain, in which the signal appears sparse. Classic transforms such as the Fourier transform or the digital wavelet transform (DWT) fail occasionally in processing complex seismic wavefields because of the nonstationarity of seismic data in time and space dimensions. We present a sparse multiscale transform domain specifically tailored to seismic reflection data. The new wavelet-like transform — the OC-seislet transform — uses a differential offset-continuation (OC) operator that predicts prestack reflection data in offset, midpoint, and time coordinates. It provides a high compression of reflection events. Its compression properties indicate the potential of OC seislets for applications such as seismic data regularization or noise attenuation. Results of applying the method to synthetic and field data examples demonstrate that the OC-seislet transform can reconstruct missing seismic data and eliminate random noise even in structurally complex areas.


2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

Data Series ◽  
10.3133/ds496 ◽  
2009 ◽  
Author(s):  
Janice A. Subino ◽  
Shawn V. Dadisman ◽  
Dana S. Wiese ◽  
Karynna Calderon ◽  
Daniel C. Phelps

Data Series ◽  
10.3133/ds119 ◽  
2006 ◽  
Author(s):  
Karynna Calderon ◽  
Shawn V. Dadisman ◽  
Dann K. Yobbi ◽  
W. Scott McBride ◽  
James G. Flocks ◽  
...  

Data Series ◽  
10.3133/ds259 ◽  
2007 ◽  
Author(s):  
Arnell S. Harrison ◽  
Shawn V. Dadisman ◽  
Nick F. Ferina ◽  
Dana S. Wiese ◽  
James G. Flocks

Data Series ◽  
10.3133/ds308 ◽  
2007 ◽  
Author(s):  
Arnell S. Harrison ◽  
Shawn V. Dadisman ◽  
Christopher D. Reich ◽  
Dana S. Wiese ◽  
Jason W. Greenwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document