Model Update December 2008: Upper Mantle Heterogeneity beneath North America from P-wave Travel Time Tomography with Global and USArray Transportable Array Data

2009 ◽  
Vol 80 (4) ◽  
pp. 638-645 ◽  
Author(s):  
S. Burdick ◽  
R. D. van der Hilst ◽  
F. L. Vernon ◽  
V. Martynov ◽  
T. Cox ◽  
...  
2014 ◽  
Vol 85 (1) ◽  
pp. 77-81 ◽  
Author(s):  
S. Burdick ◽  
R. D. van der Hilst ◽  
F. L. Vernon ◽  
V. Martynov ◽  
T. Cox ◽  
...  

2017 ◽  
Vol 88 (2A) ◽  
pp. 319-325 ◽  
Author(s):  
Scott Burdick ◽  
Frank L. Vernon ◽  
Vladik Martynov ◽  
Jennifer Eakins ◽  
Trilby Cox ◽  
...  

2008 ◽  
Vol 79 (3) ◽  
pp. 384-392 ◽  
Author(s):  
S. Burdick ◽  
C. Li ◽  
V. Martynov ◽  
T. Cox ◽  
J. Eakins ◽  
...  

2018 ◽  
Vol 499 ◽  
pp. 157-172 ◽  
Author(s):  
Chiara Civiero ◽  
Vincent Strak ◽  
Susana Custódio ◽  
Graça Silveira ◽  
Nicholas Rawlinson ◽  
...  

2012 ◽  
Vol 83 (2) ◽  
pp. 280-280 ◽  
Author(s):  
S. Burdick ◽  
R. D. van der Hilst ◽  
F. L. Vernon ◽  
V. Martynov ◽  
T. Cox ◽  
...  

2020 ◽  
Author(s):  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

<p>We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 347 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.</p><p>For predicting P-wave travel times, we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. Outside this box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method. We invert differences between observed and predicted travel times for P-wave velocities inside the box. Velocity is discretized on a regular grid with an average spacing of about 25 km. The misfit reduction reaches values of up to 75% depending on damping and smoothing parameters.</p><p>The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies extending down to a depth of 300 km are located below the central and eastern Alps, separated by a clear gap below the western part of the Tauern window. Further to the east the model indicates a possible high-velocity connection between the eastern Alps and the Dinarides. Regarding the lateral position of the central and eastern Alpine slabs, our results confirm previous studies. However, there are differences regarding depth extent, dip angles and dip directions. Both structures dip very steeply with a tendency towards northward dipping. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.</p>


2021 ◽  
Author(s):  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

<p>We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 370 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.</p><p>For predicting P-wave travel times we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. To account for influences of the strongly heterogeneous crust that cannot be resolved with teleseismic data, we integrate a complex three-dimensional crustal model directly into our model. Outside the box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method (Rawlinson et al. 2005). We invert differences between observed and predicted traveltimes for P-wave velocities inside the box. Velocity is discretized on a regular grid with a spacing of about 25x25x15 km. The misfit reduction reaches values of over 80% depending on damping and smoothing parameters.</p><p>The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies of high complexity extending down to a depth of 300 km are located below the central and eastern Alps, both being detached from the lithosphere and separated by a clear gap below the western part of the Tauern window. The central anomaly shows mainly southwards dipping, whereas the eastern anomaly is mainly dipping to the northeast. We compare our results to former studies, confirming lateral positions of the anomalies. However, the new results can benefit from the superior resolution capabilities of the dense AlpArray seismic network, providing more accurate insights into depth extent, dip angle and directions. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.</p>


2012 ◽  
Vol 83 (1) ◽  
pp. 23-28 ◽  
Author(s):  
S. Burdick ◽  
R. D. van der Hilst ◽  
F. L. Vernon ◽  
V. Martynov ◽  
T. Cox ◽  
...  

2010 ◽  
Vol 81 (5) ◽  
pp. 689-693 ◽  
Author(s):  
S. Burdick ◽  
R. D. van der Hilst ◽  
F. L. Vernon ◽  
V. Martynov ◽  
T. Cox ◽  
...  

2021 ◽  
Author(s):  
Francesco Rappisi ◽  
Brandon Paul Vanderbeek ◽  
Manuele Faccenda

<p>Teleseismic travel-time tomography remains one of the most popular methods for obtaining images of Earth's upper mantle. While teleseismic shear phases, most notably SKS, are commonly used to infer the anisotropic properties of the upper mantle, anisotropic structure is often ignored in the construction of body wave shear velocity models. Numerous researchers have demonstrated that neglecting anisotropy in P-wave tomography can introduce significant imaging artefacts that could lead to spurious interpretations. Less attention has been given to the effect of anisotropy on S-wave tomography partly because, unlike P-waves, there is not a ray-based methodology for modelling S-wave travel-times through anisotropic media. Here we evaluate the effect that the isotropic approximation has on tomographic images of the subsurface when shear waves are affected by realistic mantle anisotropy patterns. We use SPECFEM to model the teleseismic shear wavefield through a geodynamic model of subduction that includes elastic anisotropy predicted from micromechanical models of polymineralic aggregates advected through the simulated flow field. We explore how the chosen coordinates system in which S-wave arrival times are measured (e.g., radial versus transverse) affects the imaging results. In all cases, the isotropic imaging assumption leads to numerous artefacts in the recovered velocity models that could result in misguided inferences regarding mantle dynamics. We find that when S-wave travel-times are measured in the direction of polarisation, the apparent anisotropic shear velocity can be approximated using sinusoidal functions of period pi and two-pi. This observation allows us to use ray-based methods to predict S-wave travel-times through anisotropic models. We show that this parameterisation can be used to invert S-wave travel-times for the orientation and strength of anisotropy in a manner similar to anisotropic P-wave travel-time tomography. In doing so, the magnitude of imaging artefacts in the shear velocity models is greatly reduced.</p>


Sign in / Sign up

Export Citation Format

Share Document