Creating a Tool to Demonstrate Hyperbolic Geometry And Its Uses for Data Structures

2021 ◽  
Author(s):  
Daniel Bankston ◽  
Allen Battles ◽  
David Gurney ◽  
Edgar N. Reyes
1994 ◽  
Vol 9 (3) ◽  
pp. 127
Author(s):  
X.-B. Lu ◽  
F. Stetter
Keyword(s):  

Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter explains and proves the Nielsen–Thurston classification of elements of Mod(S), one of the central theorems in the study of mapping class groups. It first considers the classification of elements for the torus of Mod(T² before discussing higher-genus analogues for each of the three types of elements of Mod(T². It then states the Nielsen–Thurston classification theorem in various forms, as well as a connection to 3-manifold theory, along with Thurston's geometric classification of mapping torus. The rest of the chapter is devoted to Bers' proof of the Nielsen–Thurston classification. The collar lemma is highlighted as a new ingredient, as it is also a fundamental result in the hyperbolic geometry of surfaces.


Disputatio ◽  
2019 ◽  
Vol 11 (55) ◽  
pp. 345-369
Author(s):  
Peter Ludlow

AbstractDavid Chalmers argues that virtual objects exist in the form of data structures that have causal powers. I argue that there is a large class of virtual objects that are social objects and that do not depend upon data structures for their existence. I also argue that data structures are themselves fundamentally social objects. Thus, virtual objects are fundamentally social objects.


Sign in / Sign up

Export Citation Format

Share Document