scholarly journals Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions

Author(s):  
Saibah Siregar ◽  
Sintuja Raman
2015 ◽  
Vol 4 (4) ◽  
pp. 28-33
Author(s):  
Dr. T. Ram Reddy ◽  
◽  
R. Bharavi Sharma ◽  
K. Rajya Lakshmi ◽  
◽  
...  

2014 ◽  
Vol 26 (5-6) ◽  
pp. 1025-1036
Author(s):  
G. Murugusundaramoorthy ◽  
T. Janani

2020 ◽  
Vol 304 (1) ◽  
pp. 15-41
Author(s):  
Debika Banerjee ◽  
T. Makoto Minamide ◽  
Yoshio Tanigawa
Keyword(s):  

Author(s):  
TAKASHI NAKAMURA

AbstractLet 0 < a ⩽ 1, s, z ∈ ${\mathbb{C}}$ and 0 < |z| ⩽ 1. Then the Hurwitz–Lerch zeta function is defined by Φ(s, a, z) ≔ ∑∞n = 0zn(n + a)− s when σ ≔ ℜ(s) > 1. In this paper, we show that the Hurwitz zeta function ζ(σ, a) ≔ Φ(σ, a, 1) does not vanish for all 0 < σ < 1 if and only if a ⩾ 1/2. Moreover, we prove that Φ(σ, a, z) ≠ 0 for all 0 < σ < 1 and 0 < a ⩽ 1 when z ≠ 1. Real zeros of Hurwitz–Lerch type of Euler–Zagier double zeta functions are studied as well.


2021 ◽  
Vol 21 (1) ◽  
pp. 26-38
Author(s):  
B. Venkateswarlu ◽  
◽  
P Thirupathi Reddy ◽  
R. Madhuri Shilpa ◽  
Sujatha ◽  
...  

In this paper, we introduce and study a new subclass of meromorphic univalent functions defined by Hurwitz-Lerch Zeta function. We obtain coefficient inequalities, extreme points, radius of starlikeness and convexity. Finally we obtain partial sums and neighborhood properties for the class $\sigma^*(\gamma, k, \lambda, b, s).$


2011 ◽  
Vol 42 (2) ◽  
Author(s):  
Rabha Ibrahim ◽  
Maslina Darus
Keyword(s):  

2004 ◽  
Vol 121 (16) ◽  
pp. 7708 ◽  
Author(s):  
Toshikatsu Koga ◽  
Hisashi Matsuyama
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document