scholarly journals Hybrid Neural Network Alignment and Lexicon Model in Direct HMM for Statistical Machine Translation

Author(s):  
Weiyue Wang ◽  
Tamer Alkhouli ◽  
Derui Zhu ◽  
Hermann Ney
2014 ◽  
Author(s):  
Jacob Devlin ◽  
Rabih Zbib ◽  
Zhongqiang Huang ◽  
Thomas Lamar ◽  
Richard Schwartz ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Jinying Kong ◽  
Yating Yang ◽  
Lei Wang ◽  
Xi Zhou ◽  
Tonghai Jiang ◽  
...  

In phrase-based machine translation (PBMT) systems, the reordering table and phrase table are very large and redundant. Unlike most previous works which aim to filter phrase table, this paper proposes a novel deep neural network model to prune reordering table. We cast the task as a deep learning problem where we jointly train two models: a generative model to implement rule embedding and a discriminative model to classify rules. The main contribution of this paper is that we optimize the reordering model in PBMT by filtering reordering table using a recursive autoencoder model. To evaluate the performance of the proposed model, we performed it on public corpus to measure its reordering ability. The experimental results show that our approach obtains high improvement in BLEU score with less scale of reordering table on two language pairs: English-Chinese (+0.28) and Uyghur-Chinese (+0.33) MT.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Wang

Relying on large-scale parallel corpora, neural machine translation has achieved great success in certain language pairs. However, the acquisition of high-quality parallel corpus is one of the main difficulties in machine translation research. In order to solve this problem, this paper proposes unsupervised domain adaptive neural network machine translation. This method can be trained using only two unrelated monolingual corpora and obtain a good translation result. This article first measures the matching degree of translation rules by adding relevant subject information to the translation rules and dynamically calculating the similarity between each translation rule and the document to be translated during the decoding process. Secondly, through the joint training of multiple training tasks, the source language can learn useful semantic and structural information from the monolingual corpus of a third language that is not parallel to the current two languages during the process of translation into the target language. Experimental results show that better results can be obtained than traditional statistical machine translation.


Sign in / Sign up

Export Citation Format

Share Document