scholarly journals Error bounds for Gauss-Lobatto quadrature formula with multiple end points with Chebyshev weight function of the third and the fourth kind

Filomat ◽  
2016 ◽  
Vol 30 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Ljubica Mihic ◽  
Aleksandar Pejcev ◽  
Miodrag Spalevic

For analytic functions the remainder terms of quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points -+1, for Gauss-Lobatto quadrature formula with multiple end points with Chebyshev weight function of the third and the fourth kind. Starting from the explicit expression of the corresponding kernel, derived by Gautschi and Li, we determine the locations on the ellipses where maximum modulus of the kernel is attained. The obtained values confirm the corresponding conjectured values given by Gautschi and Li in paper [The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points, Journal of Computational and Applied Mathematics 33 (1990) 315-329.]

2019 ◽  
Vol 13 (2) ◽  
pp. 463-477
Author(s):  
Aleksandar Pejcev ◽  
Ljubica Mihic

Starting from the explicit expression of the corresponding kernels, derived by Gautschi and Li (W. Gautschi, S. Li: The remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadrature rules with multiple end points, J. Comput. Appl. Math. 33 (1990) 315{329), we determine the exact dimensions of the minimal ellipses on which the modulus of the kernel starts to behave in the described way. The effective error bounds for Gauss- Radau and Gauss-Lobatto quadrature formulas with double end point(s) are derived. The comparisons are made with the actual errors.


2017 ◽  
Vol 102 (116) ◽  
pp. 73-83
Author(s):  
Ljubica Mihic

The remainder term of quadrature formula can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours for Gauss?Radau quadrature formula with the Chebyshev weight function of the second kind with double and single end point. Starting from the explicit expression of the corresponding kernel, derived by Gautschi and Li, we determine the locations on the ellipses where the maximum modulus of the kernel is attained.


2013 ◽  
Vol 169 ◽  
pp. 23-34 ◽  
Author(s):  
Aleksandar V. Pejčev ◽  
Miodrag M. Spalević

2017 ◽  
Vol 11 (2) ◽  
pp. 451-469
Author(s):  
Aleksandar Pejcev

For analytic functions we study the remainder terms of Gauss quadrature rules with respect to Bernstein-Szeg? weight functions w(t) = w?,?,?(t) = ?1+t/ 1-t/?(?-2?)t2+2?(?-?)t+?2+?2, t?(-1,1), where 0 < ? < ?, ??2?, ??? < ?-?, and whose denominator is an arbitrary polynomial of exact degree 2 that remains positive on [-1,1]. The subcase ?=1, ?= 2/(1+?), -1 < ? < 0 and ?=0 has been considered recently by M. M. Spalevic, Error bounds of Gaussian quadrature formulae for one class of Bernstein-Szeg? weights, Math. Comp., 82 (2013), 1037-1056.


Sign in / Sign up

Export Citation Format

Share Document