scholarly journals On the growth and the zeros of solutions of higher order linear differential equations with meromorphic coefficients

2015 ◽  
Vol 98 (112) ◽  
pp. 199-210
Author(s):  
Maamar Andasmas ◽  
Benharrat Belaïdi

We investigate the growth of meromorphic solutions of homogeneous and nonhomogeneous higher order linear differential equations f(k) + k-1?j=1 Ajf(j) + A0f = 0 (k ? 2); f(k) + k-1 ?j=1 Ajf(j) + A0f = Ak (k ? 2); where Aj(z)(j=0,1,...,k) are meromorphic functions with finite order. Under some conditions on the coefficients, we show that all meromorphic solutions f ?/0 of the above equations have an infinite order and infinite lower order. Furthermore, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros. We improve the results due to Kwon, Chen and Yang, Bela?di, Chen, Shen and Xu.

2021 ◽  
Vol 6 (10) ◽  
pp. 10833-10845
Author(s):  
Yu Chen ◽  
◽  
Guantie Deng ◽  

<abstract><p>In this paper, we investigate the fast growing solutions of higher-order linear differential equations where $ A_0 $, the coefficient of $ f $, dominates other coefficients near a point on the boundary of the unit disc. We improve the previous results of solutions of the equations where the modulus of $ A_{0} $ is dominant near a point on the boundary of the unit disc, and obtain extensive version of iterated order of solutions of the equations where the characteristic function of $ A_{0} $ is dominant near the point. We also obtain a general result of the iterated exponent of convergence of the fixed points of the solutions of higher-order linear differential equations in the unit disc. This work is an extension and an improvement of recent results of Hamouda and Cao.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document