On the many server queue with exponential service times

1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.

1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


1973 ◽  
Vol 5 (1) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


1985 ◽  
Vol 22 (04) ◽  
pp. 893-902 ◽  
Author(s):  
Hermann Thorisson

We consider the stable k-server queue with non-stationary Poisson arrivals and i.i.d. service times and show that the non-time-homogeneous Markov process Zt = (the queue length and residual service times at time t) can be subordinated to a stable time-homogeneous regenerative process. As an application we show that if the system starts from given conditions at time s then the distribution of Zt stabilizes (but depends on t) as s tends backwards to –∞. Also moment and stochastic domination results are established for the delay and recurrence times of the regenerative process leading to results on uniform rates of convergence.


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


1985 ◽  
Vol 22 (4) ◽  
pp. 893-902 ◽  
Author(s):  
Hermann Thorisson

We consider the stable k-server queue with non-stationary Poisson arrivals and i.i.d. service times and show that the non-time-homogeneous Markov process Zt = (the queue length and residual service times at time t) can be subordinated to a stable time-homogeneous regenerative process. As an application we show that if the system starts from given conditions at time s then the distribution of Zt stabilizes (but depends on t) as s tends backwards to –∞. Also moment and stochastic domination results are established for the delay and recurrence times of the regenerative process leading to results on uniform rates of convergence.


1971 ◽  
Vol 8 (01) ◽  
pp. 95-109
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem. Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


1974 ◽  
Vol 11 (03) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


Sign in / Sign up

Export Citation Format

Share Document