Los' Theorem and the Boolean Prime Ideal Theorem Imply the Axiom of Choice

1975 ◽  
Vol 49 (2) ◽  
pp. 426 ◽  
Author(s):  
Paul E. Howard
1973 ◽  
Vol 38 (3) ◽  
pp. 416-422 ◽  
Author(s):  
Paul E. Howard

AbstractThe Fraenkel-Mostowski method has been widely used to prove independence results among weak versions of the axiom of choice. In this paper it is shown that certain statements cannot be proved by this method. More specifically it is shown that in all Fraenkel-Mostowski models the following hold:1. The axiom of choice for sets of finite sets implies the axiom of choice for sets of well-orderable sets.2. The Boolean prime ideal theorem implies a weakened form of Sikorski's theorem.


1997 ◽  
Vol 62 (2) ◽  
pp. 438-456 ◽  
Author(s):  
David Pincus

AbstractLet DO denote the principle: Every infinite set has a dense linear ordering. DO is compared to other ordering principles such as O, the Linear Ordering principle, KW, the Kinna-Wagner Principle, and PI, the Prime Ideal Theorem, in ZF, Zermelo-Fraenkel set theory without AC, the Axiom of Choice.The main result is:Theorem. AC ⇒ KW ⇒ DO ⇒ O, and none of the implications is reversible in ZF + PI.The first and third implications and their irreversibilities were known. The middle one is new. Along the way other results of interest are established. O, while not quite implying DO, does imply that every set differs finitely from a densely ordered set. The independence result for ZF is reduced to one for Fraenkel-Mostowski models by showing that DO falls into two of the known classes of statements automatically transferable from Fraenkel-Mostowski to ZF models. Finally, the proof of PI in the Fraenkel-Mostowski model leads naturally to versions of the Ramsey and Ehrenfeucht-Mostowski theorems involving sets that are both ordered and colored.


1983 ◽  
Vol 48 (3) ◽  
pp. 841-846 ◽  
Author(s):  
J.L. Bell

The Sikorski Extension Theorem [6] states that, for any Boolean algebra A and any complete Boolean algebra B, any homomorphism of a subalgebra of A into B can be extended to the whole of A. That is,Inj: Any complete Boolean algebra is injective (in the category of Boolean algebras).The proof of Inj uses the axiom of choice (AC); thus the implication AC → Inj can be proved in Zermelo-Fraenkel set theory (ZF). On the other hand, the Boolean prime ideal theoremBPI: Every Boolean algebra contains a prime ideal (or, equivalently, an ultrafilter)may be equivalently stated as:The two element Boolean algebra 2 is injective,and so the implication Inj → BPI can be proved in ZF.In [3], Luxemburg surmises that this last implication cannot be reversed in ZF. It is the main purpose of this paper to show that this surmise is correct. We shall do this by showing that Inj implies that BPI holds in every Boolean extension of the universe of sets, and then invoking a recent result of Monro [5] to the effect that BPI does not yield this conclusion.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


Sign in / Sign up

Export Citation Format

Share Document