Paired Dictionary Learning Based MR Image Reconstruction from Undersampled k-Space Data

Author(s):  
Jiaodi Liu ◽  
Yuxia Sheng ◽  
Jun Yang ◽  
Dan Xiong
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Varun P. Gopi ◽  
P. Palanisamy ◽  
Khan A. Wahid ◽  
Paul Babyn

This paper introduces an efficient algorithm for magnetic resonance (MR) image reconstruction. The proposed method minimizes a linear combination of nonlocal total variation and least-square data-fitting term to reconstruct the MR images from undersampledk-space data. The nonlocal total variation is taken as theL1-regularization functional and solved using Split Bregman iteration. The proposed algorithm is compared with previous methods in terms of the reconstruction accuracy and computational complexity. The comparison results demonstrate the superiority of the proposed algorithm for compressed MR image reconstruction.


2011 ◽  
Vol 67 (6) ◽  
pp. 1600-1608 ◽  
Author(s):  
Kevin M. Johnson ◽  
Walter F. Block ◽  
Scott. B. Reeder ◽  
Alexey Samsonov

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 308 ◽  
Author(s):  
Di Zhao ◽  
Feng Zhao ◽  
Yongjin Gan

Deep learning has proven itself to be able to reduce the scanning time of Magnetic Resonance Imaging (MRI) and to improve the image reconstruction quality since it was introduced into Compressed Sensing MRI (CS-MRI). However, the requirement of using large, high-quality, and patient-based datasets for network training procedures is always a challenge in clinical applications. In this paper, we propose a novel deep learning based compressed sensing MR image reconstruction method that does not require any pre-training procedure or training dataset, thereby largely reducing clinician dependence on patient-based datasets. The proposed method is based on the Deep Image Prior (DIP) framework and uses a high-resolution reference MR image as the input of the convolutional neural network in order to induce the structural prior in the learning procedure. This reference-driven strategy improves the efficiency and effect of network learning. We then add the k-space data correction step to enforce the consistency of the k-space data with the measurements, which further improve the image reconstruction accuracy. Experiments on in vivo MR datasets showed that the proposed method can achieve more accurate reconstruction results from undersampled k-space data.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 158434-158444 ◽  
Author(s):  
Shahid Ikram ◽  
Syed Zubair ◽  
Jawad Ali Shah ◽  
Ijaz Mansoor Qureshi ◽  
Abdul Wahid ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Chengzhi Deng ◽  
Shengqian Wang ◽  
Wei Tian ◽  
Zhaoming Wu ◽  
Saifeng Hu

Recent developments in compressive sensing (CS) show that it is possible to accurately reconstruct the magnetic resonance (MR) image from undersampledk-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model associated with the nonlocal total variation (NLTV) and the wavelet approximate sparsity. Nonlocal total variation can restore periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more accurate sparse reconstruction than fixed waveletl0andl1norm. Furthermore, a variable splitting and augmented Lagrangian algorithm is presented to solve the proposed minimization problem. Experimental results on MR image reconstruction demonstrate that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality assessment.


Sign in / Sign up

Export Citation Format

Share Document