The Calder´on-Zygmund Theory I: Ellipticity

Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.

Author(s):  
Brian Street

This chapter turns to a general theory which generalizes and unifies all of the examples in the preceding chapters. A main issue is that the first definition from the trichotomy does not generalize to the multi-parameter situation. To deal with this, strengthened cancellation conditions are introduced. This is done in two different ways, resulting in four total definitions for singular integral operators (the first two use the strengthened cancellation conditions, while the later two are generalizations of the later two parts of the trichotomy). Thus, we obtain four classes of singular integral operators, denoted by A1, A2, A3, and A4. The main theorem of the chapter is A1 = A2 = A3 = A4; i.e., all four of these definitions are equivalent. This leads to many nice properties of these singular integral operators.


2015 ◽  
Vol 27 (1) ◽  
Author(s):  
Feng Liu ◽  
Huoxiong Wu

AbstractThis paper gives a criterion on the weighted norm estimates of the oscillatory and variation operators for the commutators of Calderón–Zygmund singular integrals in dimension 1. As applications, the weighted


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Dong ◽  
Jizheng Huang ◽  
Heping Liu

LetL=-Δ+Vbe a Schrödinger operator onRn,n≥3, whereV≢0is a nonnegative potential belonging to the reverse Hölder classBn/2. The Hardy type spacesHLp, n/(n+δ) <p≤1,for someδ>0, are defined in terms of the maximal function with respect to the semigroup{e-tL}t>0. In this paper, we investigate the bounded properties of some singular integral operators related toL, such asLiγand∇L-1/2, on spacesHLp. We give the molecular characterization ofHLp, which is used to establish theHLp-boundedness of singular integrals.


2019 ◽  
Vol 31 (2) ◽  
pp. 535-542
Author(s):  
Yibiao Pan

AbstractA sharp logarithmic bound is established for the {H^{1}}-norm of oscillatory singular integrals with quadratic phases and Hölder class kernels. Prior results had relied on a {C^{1}}-assumption on the kernel.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Amjad Hussain ◽  
Guilian Gao

The paper establishes some sufficient conditions for the boundedness of singular integral operators and their commutators from products of variable exponent Herz spaces to variable exponent Herz spaces.


1994 ◽  
Vol 1 (4) ◽  
pp. 367-376
Author(s):  
V. S. Guliev

Abstract Some sufficient conditions are found for a pair of weight functions, providing the validity of two-weighted inequalities for singular integrals defined on Heisenberg groups.


Author(s):  
Brian Street

This chapter develops the theory of multi-parameter Carnot–Carathéodory geometry, which is needed to study singular integral operators. In the case when the balls are of product type, all of the results are simple variants of results in the single-parameter theory. When the balls are not of product type, these ideas become more difficult. What saves the day is the quantitative Frobenius theorem given in Chapter 2. This can be used to estimate certain integrals, as well as develop an appropriate maximal function and an appropriate Littlewood–Paley square function, all of which are essential to our study of singular integral operators.


1972 ◽  
Vol 24 (5) ◽  
pp. 915-925 ◽  
Author(s):  
Robert S. Strichartz

It is well-known that the space L1(Rn) of integrable functions on Euclidean space fails to be preserved by singular integral operators. As a result the rather large Lp theory of partial differential equations also fails for p = 1. Since L1 is such a natural space, many substitute spaces have been considered. One of the most interesting of these is the space we will denote by H1(Rn) of integrable functions whose Riesz transforms are integrable.


Sign in / Sign up

Export Citation Format

Share Document