scholarly journals The safest point method as an efficient tool for reliability-based design optimization applied to free vibrated composite structures

2017 ◽  
Vol 17 (2) ◽  
pp. 46-55 ◽  
Author(s):  
G. Kharmanda ◽  
2021 ◽  
pp. 002199832110476
Author(s):  
Zhao Liu ◽  
Lei Zhang ◽  
Ping Zhu ◽  
Mushi Li

Three-dimensional orthogonal woven composites are noted for their excellent mechanical properties and delamination resistance, so they are expected to have promising prospects in lightweight applications in the automobile industry. The multi-scale characteristics and inherent uncertainty of design variables pose great challenges to the optimization procedure for 3D orthogonal woven composite structures. This paper aims to propose a reliability-based design optimization method for guidance on the lightweight design of 3D orthogonal woven composite automobile shock tower, which includes design variables from material and structure. An analytical model was firstly set up to accurately predict the elastic and strength properties of composites. After that, a novel optimization procedure was established for the multi-scale reliability optimization design of composite shock tower, based on the combination of Monte Carlo reliability analysis method, Kriging surrogate model, and particle swarm optimization algorithm. According to the results, the optimized shock tower meets the requirements of structural performance and reliability, with a weight reduction of 37.83%.


Sign in / Sign up

Export Citation Format

Share Document