Hypergolicity of Mixed Oxides of Nitrogen with Solid Fuels for Hybrid Rocket Application

Author(s):  
Alicia Benhidjeb-Carayon ◽  
Jason Gabl ◽  
Timothee L. Pourpoint
2019 ◽  
Vol 35 (2) ◽  
pp. 466-474 ◽  
Author(s):  
Alicia Benhidjeb-Carayon ◽  
Michael P. Drolet ◽  
Jason R. Gabl ◽  
Timothée L. Pourpoint

2021 ◽  
pp. 1-11
Author(s):  
Alicia Benhidjeb-Carayon ◽  
Jason R. Gabl ◽  
Benjamin E. Whitehead ◽  
Timothée L. Pourpoint

Author(s):  
Philip M. Piper ◽  
Taylor B. Groom ◽  
Jeremy W. Marcum ◽  
Timothee L. Pourpoint

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saravanan G. ◽  
Shanmugam S. ◽  
Veerappan A.R.

Purpose This paper aims to determine the regression rate using wax fuels for three different grain configurations and find a suitable grain port design for hybrid rocket application. Design/methodology/approach The design methodology of this work includes different grain port designs and subsequent selection of solid fuels for a suitable hybrid rocket application. A square, a cylindrical and a five-point star grained were designed and prepared using paraffin and beeswax fuels. They were tested in a laboratory-scale rocket with gaseous oxygen to study the effectiveness of solid fuels on these grain structures. The regression rate by static fire testing of these wax fuels was analyzed. Findings Beeswax performance is better than that of paraffin wax fuel for all three designs, and the five-slotted star fuel port grain attained the best performance. Beeswax fuel attained an average regression rate ≈of 1.35 mm/s as a function of oxidizer mass flux Gox ≈ 111.8 kg/m2 s and for paraffin wax 1.199 mm/s at Gox ≈ 121 kg/m2 s with gaseous oxygen. The local regression rates of fuels increased in the range of 0.93–1.194 mm/s at oxidizer mass flux range of 98–131 kg/m2 s for cylindrical grain, 0.99–1.21 mm/s at oxidizer mass flux range of 96–129 kg/m2s for square grain and 1.12–1.35 mm/s at oxidizer mass flux range of 91–126 kg/m2 s for a star grain. A complete set of the regression rate formulas is obtained for all three-grain designs as a function of oxidizer flux rate. Research limitations/implications The experiment has been performed for a lower chamber pressure up to 10 bar. Originality/value Different grain configurations were designed according to the required dimension of the combustion chamber, injector and exhaust nozzle of the design of a lab-scale hybrid rocket, and input parameters were selected and analyzed.


Author(s):  
Luciano Galfetti ◽  
Luigi T. DeLuca ◽  
Paolo Grassi ◽  
Christian Paravan ◽  
Viviana Luoni ◽  
...  

1999 ◽  
Vol 15 (6) ◽  
pp. 888-895 ◽  
Author(s):  
Martin J. Chiaverini ◽  
George C. Harting ◽  
Yeu-Cherng Lu ◽  
Kenneth K. Kuo ◽  
Arie Peretz ◽  
...  

Author(s):  
L.T. DeLuca ◽  
L. Galfetti ◽  
G. Colombo ◽  
F. Maggi ◽  
A. Bandera ◽  
...  

Author(s):  
Alicia Benhidjeb-Carayon ◽  
Victoria Boulos ◽  
Catriona White ◽  
Jason R. Gabl ◽  
Robert Orth ◽  
...  

Author(s):  
Luigi DeLuca ◽  
Luciano Galfetti ◽  
Filippo Maggi ◽  
Giovanni Colombo ◽  
Christian Paravan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document