scholarly journals Secret Sharing Schemes Based on Extension Fields

2018 ◽  
Vol 11 (2) ◽  
pp. 410-416
Author(s):  
Selda Çalkavur

A (t, n)−secret sharing scheme is a method of distribution of information among n participants such that t > 1 can reconstruct the secret but t − 1 cannot. There is numerous research about secret sharing schemes. However there is little research on secret sharing schemes based on extension fields. In this paper, we study secret sharing schemes based on extension fields over finite fields. We use two methods to recover the secret. We define the access structure and the accessibility degree for these secret sharing schemes. We also describe our theorems, definitions and a corollary

2016 ◽  
Vol 27 (05) ◽  
pp. 595-605 ◽  
Author(s):  
Xianfang Wang ◽  
Jian Gao ◽  
Fang-Wei Fu

In principle, every linear code can be used to construct a secret sharing scheme. However, determining the access structure of the scheme is a very difficult problem. In this paper, we study MacDonald codes over the finite non-chain ring [Formula: see text], where p is a prime and [Formula: see text]. We provide a method to construct a class of two-weight linear codes over the ring. Then, we determine the access structure of secret sharing schemes based on these codes.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 654 ◽  
Author(s):  
Selda Çalkavur ◽  
Patrick Solé

A secret sharing scheme is a method of assigning shares for a secret to some participants such that only some distinguished subsets of these subsets can recover the secret while other subsets cannot. Such schemes can be used for sharing a private key, for digital signatures or sharing the key that can be used to decrypt the content of a file. There are many methods for secret sharing. One of them was developed by Blakley. In this work, we construct a multisecret-sharing scheme over finite fields. The reconstruction algorithm is based on Blakley’s method. We determine the access structure and obtain a perfect and ideal scheme.


2020 ◽  
Vol 88 (9) ◽  
pp. 1893-1907
Author(s):  
Ryutaroh Matsumoto

Abstract We improve the flexibility in designing access structures of quantum stabilizer-based secret sharing schemes for classical secrets, by introducing message randomization in their encoding procedures. We generalize the Gilbert–Varshamov bound for deterministic encoding to randomized encoding of classical secrets. We also provide an explicit example of a ramp secret sharing scheme with which multiple symbols in its classical secret are revealed to an intermediate set, and justify the necessity of incorporating strong security criterion of conventional secret sharing. Finally, we propose an explicit construction of strongly secure ramp secret sharing scheme by quantum stabilizers, which can support twice as large classical secrets as the McEliece–Sarwate strongly secure ramp secret sharing scheme of the same share size and the access structure.


2000 ◽  
Vol 11 (02) ◽  
pp. 263-281
Author(s):  
HUNG-MIN SUN

A secret sharing scheme is a method which allows a dealer to share a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret. The collection of subsets of participants that can reconstruct the secret in this way is called access structure. The rank of an access structure is the maximum cardinality of a minimal qualified subset. A secret sharing scheme is perfect if unqualified subsets of participants obtain no information regarding the secret. The dealer's randomness is the number of random bits required by the dealer to setup a secret sharing scheme. The efficiency of the dealer's randomness is the ratio between the amount of the dealer's randomness and the length of the secret. Because random bits are a natural computational resource, it is important to reduce the amount of randomness used by the dealer to setup a secret sharing scheme. In this paper, we propose some decomposition constructions for perfect secret sharing schemes with access structures of constant rank. Compared with the best previous results, our constructions have some improved upper bounds on the dealer's randomness and on the efficiency of the dealer's randomness.


2018 ◽  
Vol 11 (2) ◽  
pp. 468-475
Author(s):  
Fatih Molla ◽  
Selda Çalkavur

Secret sharing has been a subject of study since 1979. It is important that a secret key, passwords, information of the map of a secret place or an important formula must be keptsecret. The main problem is to divide the secret into pieces instead of storing the whole for a secret sharing. A secret sharing scheme is a way of distributing a secret among a nite set of people such that only some distinguished subsets of these subsets can recover the secret. The collection of these special subsets is called the access structure of the scheme.In this paper, we propose a new approach to construct secret sharing schemes based on field extensions.


Sign in / Sign up

Export Citation Format

Share Document