scholarly journals Some New Applications of Weakly H-Embedded Subgroups of Finite Groups

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 158
Author(s):  
Li Zhang ◽  
Li-Jun Huo ◽  
Jia-Bao Liu

A subgroup H of a finite group G is said to be weakly H -embedded in G if there exists a normal subgroup T of G such that H G = H T and H ∩ T ∈ H ( G ) , where H G is the normal closure of H in G, and H ( G ) is the set of all H -subgroups of G. In the recent research, Asaad, Ramadan and Heliel gave new characterization of p-nilpotent: Let p be the smallest prime dividing | G | , and P a non-cyclic Sylow p-subgroup of G. Then G is p-nilpotent if and only if there exists a p-power d with 1 < d < | P | such that all subgroups of P of order d and p d are weakly H -embedded in G. As new applications of weakly H -embedded subgroups, in this paper, (1) we generalize this result for general prime p and get a new criterion for p-supersolubility; (2) adding the condition “ N G ( P ) is p-nilpotent”, here N G ( P ) = { g ∈ G | P g = P } is the normalizer of P in G, we obtain p-nilpotence for general prime p. Moreover, our tool is the weakly H -embedded subgroup. However, instead of the normality of H G = H T , we just need H T is S-quasinormal in G, which means that H T permutes with every Sylow subgroup of G.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].



2019 ◽  
Vol 19 (05) ◽  
pp. 2050093 ◽  
Author(s):  
M. Ramadan

Let [Formula: see text] be a finite group and [Formula: see text] a subgroup of [Formula: see text]. We say that [Formula: see text] is an [Formula: see text]-subgroup of [Formula: see text] if [Formula: see text] for all [Formula: see text]. We say that [Formula: see text] is weakly [Formula: see text]-embedded in [Formula: see text] if [Formula: see text] has a normal subgroup [Formula: see text] such that [Formula: see text] and [Formula: see text] for all [Formula: see text] where [Formula: see text] is the normal closure of [Formula: see text] in [Formula: see text]. For each prime [Formula: see text] dividing the order of [Formula: see text] let [Formula: see text] be a Sylow [Formula: see text]-subgroup of [Formula: see text]. We fix a subgroup of [Formula: see text] of order [Formula: see text] with [Formula: see text] and study the structure of [Formula: see text] under the assumption that every subgroup of [Formula: see text] of order [Formula: see text] [Formula: see text] is weakly [Formula: see text]-embedded in [Formula: see text]. Our results improve and generalize several recent results in the literature.



2021 ◽  
Vol 14 (3) ◽  
pp. 1002-1014
Author(s):  
A. A. Heliel ◽  
R. A. Hijazi ◽  
S. M. Al-Shammari

Let G be a finite group. A subgroup H of G is called SS-quasinormal in G if there is a supplement B of H to G such that H permutes with every Sylow subgroup of B. A subgroup H of G is called CSS-subgroup in G if there exists a normal subgroup K of G such that G = HK and H ∩K is SS-quasinormal in G. In this paper, we investigate the influence of minimal CSS-subgroups of G on its structure. Our results improve and generalize several recent results in the literature.



1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.



2015 ◽  
Vol 52 (4) ◽  
pp. 504-510
Author(s):  
Mohamed Asaad

Let G be a finite group. A subgroup H of G is said to be s-permutable in G if H permutes with all Sylow subgroups of G. Let H be a subgroup of G and let HsG be the subgroup of H generated by all those subgroups of H which are s-permutable in G. A subgroup H of G is called n-embedded in G if G has a normal subgroup T such that HG = HT and H ∩ T ≦ HsG, where HG is the normal closure of H in G. We investigate the influence of n-embedded subgroups of the p-nilpotency and p-supersolvability of G.



2014 ◽  
Vol 57 (3) ◽  
pp. 648-657 ◽  
Author(s):  
Juping Tang ◽  
Long Miao

AbstractLet G be a finite group and let ℱ be a class of groups. Then Zℱϕ(G) is the ℱϕ-hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are ℱ-central in G. A subgroup H is called ℳ-supplemented in a finite group G if there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H. The main purpose of this paper is to prove the following: Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of F*(E) has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is 𝓜-supplemented in G, then E ≤ Zuϕ(G).



2013 ◽  
Vol 20 (03) ◽  
pp. 421-426 ◽  
Author(s):  
Zhencai Shen ◽  
Ni Du

Let [Formula: see text] be a saturated formation containing [Formula: see text], and G be a finite group. Li etc. proposed a problem: whether there is a normality such that the following two statements are equivalent: (i) [Formula: see text]. (ii) There exists a normal subgroup H of G such that [Formula: see text] and for each Sylow subgroup P of F*(H), every member in some [Formula: see text] satisfies the above normality in G. In this paper, we find a normality satisfying the above problem. Moreover, by using the concept of ℋ-subgroups, we obtain other results about the influence of the members of some fixed [Formula: see text] on the structure of G.



1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.



2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.



1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.



Sign in / Sign up

Export Citation Format

Share Document