Marine energy. Wave, tidal and other water current converters

2015 ◽  
Keyword(s):  
Author(s):  
Stéphane Paboeuf ◽  
Laura-Mae Macadré ◽  
Pascal Yen Kai Sun

Tidal turbines are emerging technologies offering great potential for the harnessing of a renewable and predictable oceanic resource. However, exploitation at sea comes with significant design, installation, grid connection, and maintenance operations challenges. Consequently, guidelines and standards are required to ensure safety, quality, performance and accelerate tidal turbines development and commercialisation. Standardisation is also a necessity to support and improve safety and confidence of a wide range of Marine Renewable Energy (MRE) stakeholders such as designers, project operators, investors, insurers or final users. There are undergoing developments on guidelines, standards and certification systems within the International Electrotechnical Commission (IEC) Technical Committee TC 114 “Marine energy - Wave, tidal and other water current converters” and the IEC Renewable Energy “Marine Energy - Operational Management Committee” (IECRE ME – OMC). However, as the tidal energy concepts are only at the demonstration stage, only few guidelines and no dedicated certification scheme has been published so far within this organization, which guarantee an international, independent, non-governmental and consensus-based elaboration process. The aim of this paper is to present a proposal of certification methodology, developed by Bureau Veritas for the design assessment of current and tidal turbines, and its application to a French case study. This certification procedure was developed within the French research project Sabella D10 funded by ADEME and is published in the Bureau Veritas guideline NI603 “Current & Tidal Turbines”. The suggested certification procedure addresses prototype, component, type and project certification. Main objective, scope, intermediary steps to be completed and resulting certificates will be detailed for each certification scheme, as well as their interactions. This methodology will be illustrated by the case study on the Sabella D10 prototype, a French tidal turbine installed in 2015 in the Fromveur Passage, off Ushant Island. Sabella D10 is a 1 MW tidal turbine fully submerged laid on the seabed with a horizontal axis and 6 blades. It is the first French tidal turbine producing electricity and connected to the electrical network. The Sabella D10 case study will focus on prototype certification and computations performed for support structure and blades. The paper will describe the load cases that have been considered, the review procedure for the support structure and the blades design assessment, including description of a streamlined method for basic design and a detailed method for final design. In conclusion, the next steps will be introduced to continue the certification developments of tidal and current turbines.


Sign in / Sign up

Export Citation Format

Share Document