Composites made from cellulose-based materials and thermoplastics (usually called wood-polymer composites (WPC) or natural fibre composites (NFC))

2014 ◽  
2019 ◽  
Vol 770 (5) ◽  
pp. 62-66
Author(s):  
A.A. ASKADSKII ◽  
◽  
T.A. MATSEEVICH ◽  
V.I. KONDRASHCHENKO ◽  
◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Krzysztof Wilczyński ◽  
Kamila Buziak ◽  
Adrian Lewandowski ◽  
Andrzej Nastaj ◽  
Krzysztof J. Wilczyński

Wood polymer composites are materials with pseudoplastic and viscoelastic properties. They have yield stress and exhibit slip during flow. Studies on extrusion and rheology, as well as on process modeling of these highly filled materials are limited. Extensive rheological and extrusion modeling studies on the wood polymer composite based on the polypropylene matrix were performed. Viscous and slip flow properties were determined (with Rabinowitsch, Bagley, and Mooney corrections) at broad (extrusion) range of shear rate and temperature, using a high-pressure capillary rheometer. Rheological models of Klein and power-law were used for flow modeling, and Navier model was applied for slip modeling. A novel global computer model of WPC extrusion with slip effects has been developed, and process simulations were performed to compute the extrusion parameters (throughput, power consumption, pressure, temperature, etc.), and to study the effect of the material rheological characteristics on the process flow. Simulations were validated experimentally, and were discussed with respect to both rheological and process modeling aspects. It was concluded that the location of the operating point of extrusion process, which defines the thermo-mechanical process conditions, is fundamentally dependent on the rheological materials characteristics, including slip effects.


Sign in / Sign up

Export Citation Format

Share Document