Polymers
Latest Publications


TOTAL DOCUMENTS

13092
(FIVE YEARS 12023)

H-INDEX

75
(FIVE YEARS 48)

Published By Mdpi Ag

2073-4360

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Matías Jeldres ◽  
Norman Toro ◽  
Sandra Gallegos ◽  
Pedro Robles ◽  
Iván Salazar ◽  
...  

In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at a pH > 10.5, and raising the pH of seawater leads to magnesium precipitates that adversely affect subsequent tailings dewatering. Seawater pre-treatment with lime can precipitate the majority of magnesium present, with these solids then being removed by filtration. To understand how such treatment may aid tailings dewatering, treated seawater (TSw) was mixed with raw seawater (Rsw) at different ratios, analyzing the impact on the flocculated settling rate, aggregate size as measured by focused beam reflectance measurement (FBRM), and vane yield stress for two synthetic clay-based tailings. A higher proportion of Tsw (10 mg/L Mg2+) led to larger aggregates and higher settling rates at a fixed dosage, with FBRM suggesting that higher calcium concentrations in Tsw may also favor fines coagulation. The yield stress of concentrated suspensions formed after flocculation decreased with higher proportions of Tsw, a consequence of lower flocculant demand and the reduced presence of precipitates; while the latter is a minor phase by mass, their high impact on rheology reflects a small particle size. Reducing magnesium concentrations in seawater in advance of use in processing offers advantages in the water return from thickening and subsequent underflow transport. However, this may not require complete removal, with blending Tsw and Rsw an option to obtain acceptable industrial performance.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Yang Wei ◽  
Yang Xu ◽  
Gaofei Wang ◽  
Xunyu Cheng ◽  
Guofen Li

Axial compression tests were carried out on 72 FRP (fiber reinforced polymer)–stirrup composite−confined concrete columns. Stirrups ensure the residual bearing capacity and ductility after the FRP fractures. To reduce the effect of stress concentration at the corners of the confined square−section concrete columns and improve the restraint effect, an FRP–stirrup composite−confined concrete structure with rounded corners is proposed. Different corner radii of the stirrup and outer FRP were designed, and the corner radius of the stirrup was adjusted accurately to meet the designed corner radius of the outer FRP. The cross−section of the specimens gradually changed from square to circular as the corner radius increased. The influence of the cross−sectional shape and corner radius on the compressive behaviour of FRP–stirrup composite−confined concrete was analysed. An increase in the corner radius can cause the strain distribution of the FRP to be more uniform and strengthen the restraint effect. The larger the corner radius of the specimen, the better the improvement of mechanical properties. The strength of the circular section specimen was greatly improved. In addition, the test parameters also included the FRP layers, FRP types and stirrup spacing. With the same corner radius, increasing the number of FRP layers or densifying the stirrup spacing effectively improved the mechanical properties of the specimens. Finally, a database of FRP–stirrup composite−confined concrete column test results with different corner radii was established. The general calculation models were proposed, respectively, for the peak points, ultimate points and stress–strain models that are applicable to FRP−, stirrup− and FRP–stirrup−confined concrete columns with different cross−sectional shapes under axial compression.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 342
Author(s):  
Ekkachai Martwong ◽  
Santi Chuetor ◽  
Jatupol Junthip

Cationic organic pollutants (dyes and pesticides) are mainly hydrosoluble and easily contaminate water and create a serious problem for biotic and abiotic species. The elimination of these dangerous contaminants from water was accomplished by adsorption using cyclodextrin nanosponges. These nanosponges were elaborated by the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β-cyclodextrin in the presence of poly (vinyl alcohol). Their physicochemical characteristics were characterized by gravimetry, acid-base titration, TGA, 13C NMR, ATR-FTIR, Raman, X-ray diffraction, and Stereomicroscopy. The BP5 nanosponges displayed 68.4% yield, 3.31 mmol/g COOH groups, 0.16 mmol/g β-CD content, 54.2% swelling, 97.0% PQ removal, 96.7% SO removal, and 98.3% MG removal for 25 mg/L of initial concentration. The pseudo-second-order model was suitable for kinetics using 180 min of contact time. Langmuir isotherm was suitable for isotherm with the maximum adsorption of 120.5, 92.6, and 64.9 mg/g for paraquat (PQ), safranin (SO), and malachite green (MG) adsorption, respectively. Finally, the reusability performance after five regeneration times reached 94.1%, 91.6%, and 94.6% for PQ, SO, and MG adsorption, respectively.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 340
Author(s):  
Marina I. Voronova ◽  
Darya L. Gurina ◽  
Oleg V. Surov

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polycaprolactone (PHBV/PCL) polymer mixtures reinforced by cellulose nanocrystals (CNCs) have been obtained. To improve the CNC compatibility with the hydrophobic PHBV/PCL matrix, the CNC surface was modified by amphiphilic polymers, i.e., polyvinylpyrrolidone (PVP) and polyacrylamide (PAM). The polymer composites were characterized by FTIR, DSC, TG, XRD, microscopy, BET surface area, and tensile testing. The morphological, sorption, thermal, and mechanical properties of the obtained composites have been studied. It was found out that with an increase in the CNC content in the composites, the porosity of the films increased, which was reflected in an increase in their specific surface areas and water sorption. An analysis of the IR spectra confirms that hydrogen bonds can be formed between the CNC hydroxyl- and the –CO– groups of PCL and PHBV. The thermal decomposition of CNC in the PHBV/PCL/CNC composites starts at a much higher temperature than the decomposition of pure CNC. It was revealed that CNCs can either induce crystallization and the polymer crystallite growth or act as a compatibilizer of a mixture of the polymers causing their amorphization. The CNC addition significantly reduces the elongation and strength of the composites, but changes Young’s modulus insignificantly, i.e., the mechanical properties of the composites are retained under conditions of small linear deformations. A molecular-dynamics simulation of several systems, starting from simplest binary (solvent-polymer) and finishing with multi-component (CNC—polymer mixture—solvent) systems, has been made. It is concluded that the surface modification of CNCs with amphiphilic polymers makes it possible to obtain the CNC composites with hydrophobic polymer matrices.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Anton Mostovoy ◽  
Andrey Shcherbakov ◽  
Andrey Yakovlev ◽  
Sergey Arzamastsev ◽  
Marina Lopukhova

The possibility of using graphene oxide as a modifying additive for polymer fiber-reinforced composites based on epoxy resin and basalt roving has been studied. The content of graphene oxide in the system has been experimentally selected, which has the best effect on the physico-mechanical properties of the obtained polymer composite material. The efficiency of the modification of the graphene oxide surface with APTES finishing additives and aminoacetic acid, which provides chemical interaction at the polymer matrix–filler interface, has been considered. The influence of graphene oxide and functionalizing additives on the polymer curing process was investigated using the thermometric method and differential scanning calorimetry.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Ekaterina Vachagina ◽  
Nikolay Dushin ◽  
Elvira Kutuzova ◽  
Aidar Kadyirov

The development of analytical methods for viscoelastic fluid flows is challenging. Currently, this problem has been solved for particular cases of multimode differential rheological equations of media state (Giesekus, the exponential form of Phan-Tien-Tanner, eXtended Pom-Pom). We propose a parametric method that yields solutions without additional assumptions. The method is based on the parametric representation of the unknown velocity functions and the stress tensor components as a function of coordinate. Experimental flow visualization based on the SIV (smoke image velocimetry) method was carried out to confirm the obtained results. Compared to the Giesekus model, the experimental data are best predicted by the eXtended Pom-Pom model.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 336
Author(s):  
Yu Shang ◽  
Qiang Liu ◽  
Chen Mao ◽  
Sen Wang ◽  
Fan Wang ◽  
...  

Cellulose insulation polymer material is widely used in oil immersed bushing. Moisture is one of the important reasons for the deterioration of cellulose polymer insulation, which seriously threatens the safe and stable operation of bushing. It is significant to study the polarization and depolarization behavior of oil-immersed cellulose polymer insulation with different moisture condition under higher voltage. Based on polarization/depolarization current method and charge difference method, the polarization/depolarization current, interfacial polarization current and electrical conductivity of cellulose polymer under different DC voltages and humidity were obtained. Based on molecular-dynamics simulation, the effect of moisture on cellulose polymer insulation was analyzed. The results show that the polarization and depolarization currents become larger with the increase in DC voltage and moisture. The higher applied voltage will accelerate the charge carrier motion. The ionization of water molecules will produce more charge carriers. Thus, high DC voltage and moisture content will increase the interface polarization current. Increased moisture content results in more charge carriers ionized by water molecules. In addition, the invasion of moisture will reduce the band width of cellulose polymer and enhance its electrostatic potential, so as to improve its overall electrical conductivity. This paper provides a reference for analyzing the polarization characteristics of charge carriers in cellulose polymer insulation.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 333
Author(s):  
Amal Nassar ◽  
Mona Younis ◽  
Mohamed Ismail ◽  
Eman Nassar

This work investigated the effects of using a new fabrication technique to prepare polymer composite on the wear-resistant performance of epoxy resin composites under dry friction conditions. Polymer composite samples with different weight contents of silicon carbide (SiC) particles were manufactured. This paper addresses the wear behavior of the obtained samples. With the suggested technique, the samples were prepared from epoxy/silicon carbide particles using a layer of thin kraft paper to prevent the sedimentation of the ceramic particles and to control the weight content of ceramic in the polymer. Kraft paper was used as a layer in the polymer composite. The hardness, wear resistance, and water absorption capacity of the produced epoxy composite samples prepared using the kraft paper technique were evaluated. The morphology of epoxy composite samples showed a significant improvement in the ceramic distribution and enhancement of interface bonding between ceramic and the polymer. The hardness values of the developed polymer composites were enhanced by up to 42.8%, which was obtained at 18 wt.% SiC particles. Increasing the ceramic content in the epoxy also led to the enhancement of wear resistance compared with pure epoxy. The results of the microstructure study also showed that the kraft paper layers helped in maintaining the distribution of the ceramic particles according to the previously specified content in each layer in the sample. Wear tests showed that the wear rate of the polymer composite decreased with the increase in the ceramic content. This study provides a new recycling method for using old kraft paper in polymer composite manufacturing to improve the distribution of ceramic particles in the polymer matrix.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Aidana Rysbek ◽  
Yerlan Ramankulov ◽  
Askar Kurmanbayev ◽  
Agnieszka Richert ◽  
Sailau Abeldenov

In this work, the strains Bacillus megaterium BM 1, Azotobacter chrocococcumAz 3, Bacillus araybhattay RA 5 were used as an effective producer of poly-3-hydroxybutyrate P(3HB). The purpose of the study was to isolate and obtain an effective producer of P(3HB) isolated from regional chestnut soils of northern Kazakhstan. This study demonstrates the possibility of combining the protective system of cells to physical stress as a way to optimize the synthesis of PHA by strains. Molecular identification of strains and amplification of the phbC gene, transmission electron microscope (TEM), extracted and dried PHB were subjected to Fourier infrared transmission spectroscopy (FTIR). The melting point of the isolated P(3HB) was determined. The optimal concentration of bean broth for the synthesis of P(3HB) for the modified type of Bacillus megaterium RAZ 3 was 20 g/L, at which the dry weight of cells was 25.7 g/L−1 and P(3HB) yield of 13.83 g/L−1, while the percentage yield of P(3HB) was 53.75%. The FTIR spectra of the extracted polymer showed noticeable peaks at long wavelengths. Based on a proof of concept, this study demonstrates encouraging results.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 337
Author(s):  
Enrique Cuan-Urquizo ◽  
Alberto Álvarez-Trejo ◽  
Andrés Robles Robles Gil ◽  
Viridiana Tejada-Ortigoza ◽  
Carmita Camposeco-Negrete ◽  
...  

Fused deposition modeling (FDM) uses lattice arrangements, known as infill, within the fabricated part. The mechanical properties of parts fabricated via FDM are dependent on these infill patterns, which make their study of great relevance. One of the advantages of FDM is the wide range of materials that can be employed using this technology. Among these, polylactic acid (PLA)-wood has been recently gaining attention as it has become commercially available. In this work, the stiffness of two different lattice structures fabricated from PLA-wood material using FDM are studied: hexagonal and star. Rectangular samples with four different infill densities made of PLA-wood material were fabricated via FDM. Samples were subjected to 3-point bending to characterize the effective stiffness and their sensitivity to shear deformation. Lattice beams proved to be more sensitive to shear deformations, as including the contribution of shear in the apparent stiffness of these arrangements leads to more accurate results. This was evaluated by comparing the effective Young’s modulus characterized from 3-point bending using equations with and without shear inclusion. A longer separation between supports yielded closer results between both models (~41% for the longest separation tested). The effective stiffness as a function of the infill density of both topologies showed similar trends. However, the maximum difference obtained at low densities was the hexagonal topology that was ~60% stiffer, while the lowest difference was obtained at higher densities (star topology being stiffer by ~20%). Results for stiffness of PLA-wood samples were scattered. This was attributed to the defects at the lattice element level inherent to the material employed in this study, confirmed via micro-characterization.


Sign in / Sign up

Export Citation Format

Share Document