Laminated Composite Hypar Shells as Roofing Units

Author(s):  
Sarmila Sahoo

This chapter presents a broad perspective of the recent research done on laminated composite hypar shells used as roofing units. Different types of analysis including bending, vibration, buckling, impact, and failure are included. The chapter is collated and categorized based on various aspect of research. The first aspect concentrates on typical analyses including problems in which various boundary conditions and laminations are considered. Then it focuses on the structural complexities which include stiffened shells, shells with cutouts, etc. The basic results of theoretical and experimental investigations of stress-strain state, vibration, buckling, and failure are summarized in this chapter incorporating the review of materials published in scientific and technical journals and proceedings in recent times.

Author(s):  
Alexey Beskopylny ◽  
Elena Kadomtseva ◽  
Grigory Strelnikov ◽  
Yaroslav Shabanov

2016 ◽  
Vol 54 (12) ◽  
pp. 1535-1548
Author(s):  
Olga Bitkina ◽  
Jang-Ho Lee ◽  
Ki-Weon Kang ◽  
Elena Darlington

Composite structure design experience has demonstrated that use of the finite element method during the first stage of the design process is unfounded and that analytical methods to determine the stress–strain state are needed for more accurate calculations. Therefore, an analytical model of the stress–strain state of multilayer composite plates under the influence of temperature, technological, and power loads with different boundary conditions around four boundaries of a rectangular plate was developed. This model enables the solution of more than 240 different boundary value problems with a combination of the following boundary conditions: fixed, moving, hinged, and free edge. In the derivation of this mathematical analytic model, the Kirchhoff hypothesis was applied to the entire body of the anisotropic medium for the interconnected deflection and bending in the plate plane. The resulting equation is an octic linear partial differential equation to express the generalized function of movements.


1991 ◽  
Vol 113 (4) ◽  
pp. 570-578 ◽  
Author(s):  
A. A. Khdeir ◽  
J. N. Reddy

Exact solutions of rectangular laminated composite plates with different boundary conditions are studied. The Le´vy-type solutions of the classical, first-order and third-order shear deformation theories are developed using the state-space approach. The finite-element solutions for the three theories are also computed and compared with the exact solutions for various boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document