A Convergent Algorithm for Generalized Linear Complementarity Problem in Engineering Modeling

2011 ◽  
Vol 267 ◽  
pp. 205-210
Author(s):  
Hong Chun Sun

In this paper, we establish a error bound for the generalized linear complementtarity problem in engineering modeling(GLCP)which can be viewed as extensions of previously known results, based on which the famous Levenberg-Marquardt (L-M) algorithm is employed for obtaining its solution, and we show that the L-M algorithm is quadratically convergent without nondegenerate solution which is a new result for GLCP.

2022 ◽  
Vol 7 (2) ◽  
pp. 3239-3249
Author(s):  
Lanlan Liu ◽  
◽  
Pan Han ◽  
Feng Wang

<abstract><p>$ S $-$ SDDS $-$ B $ matrices is a subclass of $ P $-matrices which contains $ B $-matrices. New error bound of the linear complementarity problem for $ S $-$ SDDS $-$ B $ matrices is presented, which improves the corresponding result in <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>. Numerical examples are given to verify the corresponding results.</p></abstract>


2011 ◽  
Vol 267 ◽  
pp. 350-355
Author(s):  
Lei Wang

In this paper, the global error estimation for the generalized linear complementarity problem in economic equilibrium modeling(GLCP) is established. The result obtained in this paper can be viewed as extensions of previously known results.


Sign in / Sign up

Export Citation Format

Share Document