scholarly journals A pattern growth-based sequential pattern mining algorithm called prefixSuffixSpan

2017 ◽  
Vol 4 (12) ◽  
pp. 152103
Author(s):  
Kenmogne Edith Belise ◽  
Tadmon Calvin ◽  
Nkambou Roger
2020 ◽  
Vol 36 (1) ◽  
pp. 1-15
Author(s):  
Tran Huy Duong ◽  
Nguyen Truong Thang ◽  
Vu Duc Thi ◽  
Tran The Anh

High utility sequential pattern mining is a popular topic in data mining with the main purpose is to extract sequential patterns with high utility in the sequence database. Many recent works have proposed methods to solve this problem. However, most of them does not consider item intervals of sequential patterns which can lead to the extraction of sequential patterns with too long item interval, thus making little sense. In this paper, we propose a High Utility Item Interval Sequential Pattern (HUISP) algorithm to solve this problem. Our algorithm uses pattern growth approach and some techniques to increase algorithm's performance.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-15
Author(s):  
Tran Huy Duong ◽  
Nguyen Truong Thang ◽  
Vu Duc Thi ◽  
Tran The Anh

High utility sequential pattern mining is a popular topic in data mining with the main purpose is to extract sequential patterns with high utility in the sequence database. Many recent works have proposed methods to solve this problem. However, most of them does not consider item intervals of sequential patterns which can lead to the extraction of sequential patterns with too long item interval, thus making little sense. In this paper, we propose a High Utility Item Interval Sequential Pattern (HUISP) algorithm to solve this problem. Our algorithm uses pattern growth approach and some techniques to increase algorithm's performance.


Author(s):  
Tao Li ◽  
Shuaichi Zhang ◽  
Hui Chen ◽  
Yongjun Ren ◽  
Xiang Li ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Kenmogne Edith Belise ◽  
Nkambou Roger ◽  
Tadmon Calvin ◽  
Engelbert Mephu Nguifo

Sequential pattern mining is an efficient technique for discovering recurring structures or patterns from very large datasets, with a very large field of applications. It aims at extracting a set of attributes, shared across time among a large number of objects in a given database. Previous studies have developed two major classes of sequential pattern mining methods, namely, the candidate generation-and-test approach based on either vertical or horizontal data formats represented respectively by GSP and SPADE, and the pattern-growth approach represented by FreeSpan, PrefixSpan and their further extensions. The performances of these algorithms depend on how patterns grow. Because of this, we introduce a heuristic to predict the optimal pattern-growth direction, i.e. the pattern-growth direction leading to the best performance in terms of runtime and memory usage. Then, we perform a number of experimentations on both real-life and synthetic datasets to test the heuristic. The performance analysis of these experimentations show that the heuristic prediction is reliable in general.


Sign in / Sign up

Export Citation Format

Share Document