scholarly journals ON THE ORBIFOLD EULER CHARACTERISTIC OF LOG DEL PEZZO SURFACES OF RANK ONE

2014 ◽  
Vol 51 (4) ◽  
pp. 867-879 ◽  
Author(s):  
DongSeon Hwang
1988 ◽  
Vol 118 (1) ◽  
pp. 63-84 ◽  
Author(s):  
M Miyanishi ◽  
D.Q Zhang

2020 ◽  
Vol 373 (8) ◽  
pp. 5371-5393 ◽  
Author(s):  
Régis Blache ◽  
Alain Couvreur ◽  
Emmanuel Hallouin ◽  
David Madore ◽  
Jade Nardi ◽  
...  

2018 ◽  
Vol 2020 (17) ◽  
pp. 5450-5475 ◽  
Author(s):  
Jinwon Choi ◽  
Michel van Garrel ◽  
Sheldon Katz ◽  
Nobuyoshi Takahashi

Abstract We study the BPS invariants for local del Pezzo surfaces, which can be obtained as the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves on the surface $S$. We calculate the Poincaré polynomials of the moduli spaces for the curve classes $\beta $ having arithmetic genus at most 2. We formulate a conjecture that these Poincaré polynomials are divisible by the Poincaré polynomials of $((-K_S).\beta -1)$-dimensional projective space. This conjecture motivates the upcoming work on log BPS numbers [8].


2017 ◽  
Vol 69 (1) ◽  
pp. 163-225 ◽  
Author(s):  
Kento FUJITA ◽  
Kazunori YASUTAKE

Sign in / Sign up

Export Citation Format

Share Document