bps invariants
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jie Gu ◽  
Babak Haghighat ◽  
Albrecht Klemm ◽  
Kaiwen Sun ◽  
Xin Wang

Abstract Given the recent geometrical classification of 6d (1, 0) SCFTs, a major question is how to compute for this large class their elliptic genera. The latter encode the refined BPS spectrum of the SCFTs, which determines geometric invariants of the associated elliptic non-compact Calabi-Yau threefolds. In this paper we establish for all 6d (1, 0) SCFTs in the atomic classification blowup equations that fix these elliptic genera to large extent. The latter fall into two types: the unity and the vanishing blowup equations. For almost all rank one theories, we find unity blowup equations which determine the elliptic genera completely. We develop several techniques to compute elliptic genera and BPS invariants from the blowup equations, including a recursion formula with respect to the number of strings, a Weyl orbit expansion, a refined BPS expansion and an ϵ1, ϵ2 expansion. For higher-rank theories, we propose a gluing rule to obtain all their blowup equations based on those of rank one theories. For example, we explicitly give the elliptic blowup equations for the three higher-rank non-Higgsable clusters, ADE chain of −2 curves and conformal matter theories. We also give the toric construction for many elliptic non-compact Calabi- Yau threefolds which engineer 6d (1, 0) SCFTs with various matter representations.


Author(s):  
Sibasish Banerjee ◽  
Pietro Longhi ◽  
Mauricio Romo

AbstractWe study BPS spectra of D-branes on local Calabi-Yau threefolds $$\mathcal {O}(-p)\oplus \mathcal {O}(p-2)\rightarrow \mathbb {P}^1$$ O ( - p ) ⊕ O ( p - 2 ) → P 1 with $$p=0,1$$ p = 0 , 1 , corresponding to $$\mathbb {C}^3/\mathbb {Z}_{2}$$ C 3 / Z 2 and the resolved conifold. Nonabelianization for exponential networks is applied to compute directly unframed BPS indices counting states with D2 and D0 brane charges. Known results on these BPS spectra are correctly reproduced by computing new types of BPS invariants of 3d-5d BPS states, encoded by nonabelianization, through their wall-crossing. We also develop the notion of exponential BPS graphs for the simplest toric examples, and show that they encode both the quiver and the potential associated to the Calabi-Yau via geometric engineering.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Hee-Joong Chung

Abstract We consider the Witten-Reshetikhin-Turaev invariants or Chern-Simons partition functions at or around roots of unity $$ q={e}^{\frac{2\pi i}{K}} $$ q = e 2 πi K with a rational level K = $$ \frac{r}{s} $$ r s where r and s are coprime integers. From the exact expression for the G = SU(2) Witten-Reshetikhin-Turaev invariants of the Seifert manifolds at a rational level obtained by Lawrence and Rozansky, we provide an expected form of the structure of the Witten-Reshetikhin-Turaev invariants in terms of the homological blocks at a rational level. Also, we discuss the asymptotic expansion of knot invariants around roots of unity where we take a limit different from the limit in the standard volume conjecture.


Author(s):  
Masaya Kameyama ◽  
Satoshi Nawata

We formulate large [Formula: see text] duality of [Formula: see text] refined Chern–Simons theory with a torus knot/link in [Formula: see text]. By studying refined BPS states in M-theory, we provide the explicit form of low-energy effective actions of Type IIA string theory with D4-branes on the [Formula: see text]-background. This form enables us to relate refined Chern–Simons invariants of a torus knot/link in [Formula: see text] to refined BPS invariants in the resolved conifold. Assuming that the extra [Formula: see text] global symmetry acts on BPS states trivially, the duality predicts graded dimensions of cohomology groups of moduli spaces of M2–M5 bound states associated to a torus knot/link in the resolved conifold. Thus, this formulation can be also interpreted as a positivity conjecture of refined Chern–Simons invariants of torus knots/links. We also discuss about an extension to non-torus knots.


2018 ◽  
Vol 2020 (17) ◽  
pp. 5450-5475 ◽  
Author(s):  
Jinwon Choi ◽  
Michel van Garrel ◽  
Sheldon Katz ◽  
Nobuyoshi Takahashi

Abstract We study the BPS invariants for local del Pezzo surfaces, which can be obtained as the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves on the surface $S$. We calculate the Poincaré polynomials of the moduli spaces for the curve classes $\beta $ having arithmetic genus at most 2. We formulate a conjecture that these Poincaré polynomials are divisible by the Poincaré polynomials of $((-K_S).\beta -1)$-dimensional projective space. This conjecture motivates the upcoming work on log BPS numbers [8].


2017 ◽  
Vol 9 (2) ◽  
pp. 71-99 ◽  
Author(s):  
Michele Cirafici
Keyword(s):  

2017 ◽  
Vol 19 (1) ◽  
pp. 1-70 ◽  
Author(s):  
Michele Cirafici
Keyword(s):  

2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Jie Gu ◽  
Min-xin Huang ◽  
Amir-Kian Kashani-Poor ◽  
Albrecht Klemm
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document