Integral Group Rings Without Proper Units

1987 ◽  
Vol 30 (1) ◽  
pp. 36-42 ◽  
Author(s):  
K. Hoechsmann ◽  
S.K. Sehgal

AbstractIf A is an elementary abelian ρ-group and C one of its cyclic subgroups, the integral group rings ZA contains, of course, the ring ZC. It will be shown below, for A of rank 2 and ρ a regular prime, that every unit of ZA is a product of units of ZC, as C ranges over all cyclic subgroups.

1980 ◽  
Vol 32 (6) ◽  
pp. 1342-1352 ◽  
Author(s):  
B. Hartley ◽  
P. F. Pickel

Let G be a group, ZG the group ring of G over the ring Z of integers, and U(ZG) the group of units of ZG. One method of investigating U(ZG) is to choose some property of groups and try to determine the groups G such that U(ZG) enjoys that property. For example Sehgal and Zassenhaus [9] have given necessary and sufficient conditions for U(ZG) to be nilpotent (see also [7]), and the same authors have investigated when U(ZG) is an FC (finite-conjugate) group [10]. For a survey of related questions, see [3]. In this paper we consider when U(ZG) contains a free subgroup of rank 2. We conjecture that if this does not happen, then every finite subgroup of G is normal, from which various other conclusions then follow (see Lemma 4).


1998 ◽  
Vol 204 (2) ◽  
pp. 588-596 ◽  
Author(s):  
Olaf Neisse ◽  
Sudarshan K. Sehgal

2000 ◽  
Vol 3 ◽  
pp. 274-306 ◽  
Author(s):  
Frauke M. Bleher ◽  
Wolfgang Kimmerle

AbstractThe object of this article is to examine a conjecture of Zassenhaus and certain variations of it for integral group rings of sporadic groups. We prove the ℚ-variation and the Sylow variation for all sporadic groups and their automorphism groups. The Zassenhaus conjecture is established for eighteen of the sporadic simple groups, and for all automorphism groups of sporadic simple groups G which are different from G. The proofs are given with the aid of the GAP computer algebra program by applying a computational procedure to the ordinary and modular character tables of the groups. It is also shown that the isomorphism problem of integral group rings has a positive answer for certain almost simple groups, in particular for the double covers of the symmetric groups.


Sign in / Sign up

Export Citation Format

Share Document